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I. Visualization

II.Modeling: Regression

III.Model Selection: LASSO, Random Forest

IV.Missing Data, Interpolation and 

Imputation

Learning Data Analysis in R
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Project Introduction: 3 Hotel Datasets
hotel_door dataset

hotel_front_desk dataset

hotel_elevator dataset



Project Intro

Objective: Merge hotel_elevator, hotel_door, 
and hotel_frontdesk for unified analysis.

1. Used hotel_frontdesk as the base dataset 
(guest_id as the unique key).

1. Derived variables:
From hotel_elevator: num_of_rides_perday
(average elevator rides per day).

From hotel_door: open_success_prob
(success rate of door access).

1. Aggregated multi-row data into concise 
formats

Merging Data
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Peak Summer 
Months and 
their Stay 
Lengths

8

# of hotel bookings in June: 501 # of hotel bookings in July: 565

# of hotel bookings in August 739: # of hotel bookings in September: 290

● Significant drop in bookings in September

● August is the peak summer month

● August signifies the last month of summer 

vacation for most, so customers tend to 

make the most of it before a return to work 

and school

● Longest average stay length: August

● Shortest average stay length: September
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Elevator 
Peak vs. Off-
peak Hours
After reviewing the hotel_elevator dataset, 
we wanted to observe what the off-peak 
and peak hours are for the hotel based on 
elevator usage. 

From the graph, we can conclude that 
elevator usage in the hotel is highest 
during two distinct peak periods: 8–10 AM
and 3–8 PM

Story 2

How did we do this? 
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Story 2

R-Code
1. Group data by timestamp and count 

number of elevator usages
2. Separate hours into two groups based 

on median usage count of 695:
a. Peak
b. Off-peak

3. Plot usage counts by hour with ggplot
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Missing Data
- Consider multicollinearity, dropped unused 
variables (e.g., room_id, redundant timestamps)

-Factored categorical variables (e.g., 
in_day_of_week, out_day_of_week)

- Handled missing values in floor and room_on_floor
with median imputation

- Explore: MAR or NMAR? Test the relationship with 
observed variables (eg: price) 

-Reason for missing value: missing data related the 
floor and room_id due the need to protect privacy.

Data Preprocessing

t = -12.763, df = 16.125, p-value = 7.602e-10
Alternative hypothesis: true difference in means between group 
FALSE and group TRUE is not equal to 0
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LASSO Model: Hotel Price

Imputing Data

Using mice, we imputed the missing data with 
pmm method (predictive mean matching)

Randomly split 80% into training data and 20%
into test data 

Splitting Data 



LASSO Model: Hotel Price

LASSO Model
Need to find the optimal λ:  the smallest is 
3.13017

The lower right picture showcases the 
coefficients of the optimal model. 



LASSO Model: Hotel Price

Model Evaluation 
● Median(y_predicted)

○ 784.2862 
● R-Squared

○ 57.55% of the variance is explained 
by the predictors in the LASSO 
model

● Root Mean Squared Error
○ On average, the model’s predictions 

deviate by $382.60 from the true 
values

Conclusion
● Relative to the size of the dataset, our 

model is acceptable
● Other models, such as the Random 

Forest model, may provide a better fit 
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Median Imputing
Replaces missing values with the median of 
the observed values in each variable.

Why we chose this approach:

● Robust to outliers, reliable
● Central tendency 

Random Forest: Length of Stay

Splitting Data 
● 80% training and 20% test sets
● as matrices



Random Forest
Configured with 

2,500 trees

mtry = ceiling(2 * sqrt(10))

node size = 5.

Key predictors: 

Price_per_day

Num_of_rides_perday

floor

Random Forest: Length of Stay



Evaluation

R-squared: 64.2%

RMSE: 0.74

Moderate predictive performance 

Random Forest: Length of Stay



Thank You!
Questions?

21

Conclusion
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