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Distribution of arithmetic functions and why we study them? Tools required to study the average distributions

Aim of the project

Arithmetic Function

A function f : N → R or C which aims to study the divisibility properties of
integers and/or distribution of prime numbers.

Example: d(n) counts the number of divisors of n. So, d(6) = 4, d(100) = 9.

Figure: limx→∞
1
x

∑
n≤x d(n) ≈ log x

To understand how functions behave on average and to gather key insights into
their mathematical structures we study their average distribution.
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Types of Arithmetic Functions

Multiplicative Function

An arithmetic function f satisfying f(mn) = f(m)f(n) whenever
gcd(m,n) = 1.

Example: (i) d(n), (ii) Euler’s totient function, ϕ(n) which counts the number
of positive integers co-primes to n and ≤ n, (iii) Möbius function,
µ(n) = (−1)r if n is square-free with r prime factors.

Completely Multiplicative Function

An arithmetic function f satisfying f(mn) = f(m)f(n),∀m,n ∈ N.

Example: f(n) = 1 and f(n) = n. Distributions well-known:∑
n≤N 1 = N,

∑
n≤N n = N(N+1)

2
.

Non-Multiplicative Function

Arithmetic functions not satisfying the multiplicative property.

Example: Von Mangoldt function, Λ(n) = log p if n = pm, m ≥ 1 and 0
otherwise .
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µ(n) = (−1)r if n is square-free with r prime factors.

Completely Multiplicative Function

An arithmetic function f satisfying f(mn) = f(m)f(n), ∀m,n ∈ N.

Example: f(n) = 1 and f(n) = n. Distributions well-known:∑
n≤N 1 = N,

∑
n≤N n = N(N+1)

2
.

Non-Multiplicative Function

Arithmetic functions not satisfying the multiplicative property.

Example: Von Mangoldt function, Λ(n) = log p if n = pm, m ≥ 1 and 0
otherwise .

Harshita Pahwa and Xinlei Xu Arithmetic Functions and their Distributions University of Waterloo



2/10

Distribution of arithmetic functions and why we study them? Tools required to study the average distributions

Types of Arithmetic Functions

Multiplicative Function

An arithmetic function f satisfying f(mn) = f(m)f(n) whenever
gcd(m,n) = 1.

Example: (i) d(n), (ii) Euler’s totient function, ϕ(n) which counts the number
of positive integers co-primes to n and ≤ n, (iii) Möbius function,
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Distribution of Multiplicative Functions

We focus our study on the distribution of multiplicative functions, with a
particular emphasis on d(n) (Divisor function) and ϕ(n) (Euler’s totient
function).

Determining the average distributions of µ(n) (Möbius function) and Λ(n)
(Von Mangoldt function) poses significantly greater challenges. Specifically:

lim
x→∞

1

x

∑
n≤x

µ(n) = 0 and lim
x→∞

1

x

∑
n≤x

Λ(n) = 1.

These findings hold equivalent significance to the prime number theorem:

lim
x→∞

#{primes ≤ x}
x/ log x

= 1.

However, proving the prime number theorem involves methods that were
outside the content of the project.
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Properties of Multiplicative Functions

Theorem

Let f be a multiplicative function. Then

f(1) = 1

f is completely multiplicative if and only if f(pn) = f(p)n for all primes p
and all integers n ≥ 1.

Dirichlet Convolution Theorem

If f and g are multiplicative functions, then their Dirichlet convolution f ∗ g
given by (f ∗ g)(n) =

∑
e|n f(e) · g

(
n
e

)
is also multiplicative.

Proof: Let m and n be coprime integers. Then

(f ∗ g)(mn) =
∑
e|mn

f(e) · g
(mn

e

)
=

∑
e1|m

∑
e2|n

f(e1 · e2) · g
(

mn

e1 · e2

)

=

∑
e1|m

f(e1) · g
(
m

e1

) ·

∑
e2|n

f(e2) · g
(

n

e2

)
= (f ∗ g)(m) · (f ∗ g)(n).
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The Big-O (Tool 1)

Let g(x) > 0 for all x ≥ a, we say

f(x) = O(g(x))

if there exists M > 0 and x0 ≥ a such that |f(x)| ≤ Mg(x) for all x ≥ x0.

If f1(x) = O(g1(x)), f2(x) = O(g2(x)), then

(f1 + f2)(x) = O(g1(x) + g2(x)) = O(max{g1(x), g2(x)}),

(f1f2)(x) = O((g1g2)(x)).

Example: x2 + 2x+ 1 = O(x2), log x = O(x1/1000).

Asymptotic

We say f is asymptotic to g (or write f(x) ∼ g(x)) if limx→∞
f(x)
g(x)

= 1.

Example: x ∼ x+ 1, ex + x100 + log x ∼ ex.
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Euler’s summation formula (Tool 2)

If f has a continuous derivative f ′ on the interval [1, x], then∑
1<n≤x

f(n) =

∫ x

1

f(t)dt+

∫ x

1

(t− [t])f ′(t)dt+ f(1)([x]− x),

where [t] denotes the greatest integer ≤ t.

Applications (Completely multiplicative f)

(a)
∑

n≤x
1
n
= log x+ C +O( 1

x
),

(b)
∑

n≤x n
α = xα+1

α+1
+O(xα) if α ≥ 0.

Euler’s constant C = limN→∞(
∑N

n=1
1
n
− logN).

Proof of (a):∑
1≤n≤x

1

n
= 1 +

∑
1<n≤x

1

n
= 1 +

∫ x

1

1

t
dt−

∫ x

1

t− [t]

t2
dt− x− [x]

x

= log x+ 1−
∫ ∞

1

t− [t]

t2
dt︸ ︷︷ ︸

C

+

∫ ∞

x

t− [t]

t2
dt︸ ︷︷ ︸

≤1/x

+O(
1

x
)
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Distribution of the Divisor function

Recall d(n) =
∑

e|n 1. We establish

1

x

∑
n≤x

d(n) ∼ log x.

Specifically, 1
x

∑
n≤x d(n) = log x+ (2C + 1) +O(1/

√
x).

Proof:∑
n≤x

d(n) =
∑
n≤x

∑
e|n

1 =
∑
e≤x

∑
n≤x/e

1
(b)
=

∑
e≤x

(x
e
+O(1)

)
(a)
= x log x+O(x).

Generalized Divisor function

Let n ≥ 1 be an integer, σα(n) =
∑

e|n eα for any real α

1

x

∑
n≤x

σα(n) ∼

{
ζ(α+1)
α+1

xα if α > 0,

ζ(−α+ 1) if α < 0,

where ζ(s) =
∑∞

n=1
1
ns is the Riemann zeta function defined on s > 1.
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Möbius Inversion Formula (Tool 3) and its application

Recall the Möbius function defined as µ(1) = 1, and if n > 1, n =
∏n

k=1 p
ak
k .

µ(n) =

{
(−1)n if a1 = ... = an = 1

0 otherwise.

Möbius Inversion Formula

Let f and g be two arithmetic functions. Then

f(n) =
∑
e|n

g(e) ⇐⇒ g(n) =
∑
e|n

µ(e)f
(n
e

)
.

For n ≥ 1, ϕ(n) is defined as

ϕ(n) =
∑

1≤k≤n
gcd(n,k)=1

1.

Thus by Möbius Inversion Formula∑
e|n

ϕ(e) = n

︸ ︷︷ ︸
Easy to prove

⇐⇒ ϕ(n) =
∑
e|n

µ(e)
n

e
.
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Distribution of Euler ϕ-function

Recall

(a)
∑
n≤x

1

n
= log x+O(1), and (b)

∑
n≤x

n =
x2

2
+O(x).

For x > 1 we have
1

x

∑
n≤x

ϕ(n) =
3

π2
x+O(log x).

Proof: One can show that
∑∞

n=1
µ(n)

n2 = 6
π2 . Then∑

n≤x

ϕ(n) =
∑
n≤x

∑
e|n

µ(e)
n

e
=

∑
q,e

qe≤x

µ(e)q

=
∑
e≤x

µ(e)
∑

q≤x/e

q

(b)
=

1

2
x2

∑
e≤x

µ(e)

e2
+O(x

∑
e≤x

1

e
)

(a)
=

3

π2
x2 +O(x log x).
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∑∞

n=1
µ(n)

n2 = 6
π2 . Then∑

n≤x

ϕ(n) =
∑
n≤x

∑
e|n

µ(e)
n

e
=

∑
q,e

qe≤x

µ(e)q

=
∑
e≤x

µ(e)
∑

q≤x/e

q

(b)
=

1

2
x2

∑
e≤x

µ(e)

e2
+O(x

∑
e≤x

1

e
)

(a)
=

3

π2
x2 +O(x log x).
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