# Harshita Pahwa and Xinlei Xu 

Faculty of Mathematics, University of Waterloo



## Arithmetic Functions and their Distributions

Under the mentorship of Sourabh Das

F23 Directed Reading Program
Women in Mathematics

## Outline

(1) Distribution of arithmetic functions and why we study them?

- Introduction to arithmetic functions
- Types of Arithmetic Functions
- Distributions that we studied
- Properties of Multiplicative Functions
(2) Tools required to study the average distributions
- Tool 1 - The Big-O
- Tool 2 - Euler's summation formula
- Distribution of the Divisor function
- Tool 3 - Möbius Inversion Formula
- Distribution of the Euler $\phi$-function


## Aim of the project

## Arithmetic Function

A function $f: \mathbb{N} \rightarrow \mathbb{R}$ or $\mathbb{C}$ which aims to study the divisibility properties of integers and/or distribution of prime numbers.

Example: $d(n)$ counts the number of divisors of $n$. So, $d(6)=4, d(100)=9$.

## Aim of the project

## Arithmetic Function

## A function $f: \mathbb{N} \rightarrow \mathbb{R}$ or $\mathbb{C}$ which aims to study the divisibility properties of

 integers and/or distribution of prime numbers.Example: $d(n)$ counts the number of divisors of $n$. So, $d(6)=4, d(100)=9$.


Figure: $\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} d(n) \approx \log x$
To understand how functions behave on average and to gather key insights into their mathematical structures we study their average distribution.

## Types of Arithmetic Functions

## Multiplicative Function

An arithmetic function $f$ satisfying $f(m n)=f(m) f(n)$ whenever $\operatorname{gcd}(m, n)=1$.

Example: (i) $d(n)$, (ii) Euler's totient function, $\phi(n)$ which counts the number of positive integers co-primes to n and $\leq n$, (iii) Möbius function, $\mu(n)=(-1)^{r}$ if $n$ is square-free with $r$ prime factors.

## Types of Arithmetic Functions

## Multiplicative Function

An arithmetic function $f$ satisfying $f(m n)=f(m) f(n)$ whenever $\operatorname{gcd}(m, n)=1$.

Example: (i) $d(n)$, (ii) Euler's totient function, $\phi(n)$ which counts the number of positive integers co-primes to n and $\leq n$, (iii) Möbius function, $\mu(n)=(-1)^{r}$ if $n$ is square-free with $r$ prime factors.

## Completely Multiplicative Function

An arithmetic function $f$ satisfying $f(m n)=f(m) f(n), \forall m, n \in \mathbb{N}$.
Example: $f(n)=1$ and $f(n)=n$. Distributions well-known:

$$
\sum_{n \leq N} 1=N, \quad \sum_{n \leq N} n=\frac{N(N+1)}{2} .
$$

## Types of Arithmetic Functions

## Multiplicative Function

An arithmetic function $f$ satisfying $f(m n)=f(m) f(n)$ whenever $\operatorname{gcd}(m, n)=1$.

Example: (i) $d(n)$, (ii) Euler's totient function, $\phi(n)$ which counts the number of positive integers co-primes to n and $\leq n$, (iii) Möbius function, $\mu(n)=(-1)^{r}$ if $n$ is square-free with $r$ prime factors.

## Completely Multiplicative Function

An arithmetic function $f$ satisfying $f(m n)=f(m) f(n), \forall m, n \in \mathbb{N}$.
Example: $f(n)=1$ and $f(n)=n$. Distributions well-known:

$$
\sum_{n \leq N} 1=N, \quad \sum_{n \leq N} n=\frac{N(N+1)}{2} .
$$

## Non-Multiplicative Function

## Arithmetic functions not satisfying the multiplicative property.

Example: Von Mangoldt function, $\Lambda(n)=\log p$ if $n=p^{m}, m \geq 1$ and 0 otherwise .

## Distribution of Multiplicative Functions

We focus our study on the distribution of multiplicative functions, with a particular emphasis on $d(n)$ (Divisor function) and $\phi(n)$ (Euler's totient function).

Determining the average distributions of $\mu(n)$ (Möbius function) and $\Lambda(n)$ (Von Mangoldt function) poses significantly greater challenges. Specifically:

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \mu(n)=0 \quad \text { and } \quad \lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \Lambda(n)=1
$$

These findings hold equivalent significance to the prime number theorem:

$$
\lim _{x \rightarrow \infty} \frac{\#\{\text { primes } \leq x\}}{x / \log x}=1
$$

However, proving the prime number theorem involves methods that were outside the content of the project.

## Properties of Multiplicative Functions

## Theorem

Let $f$ be a multiplicative function. Then

- $\quad f(1)=1$
:- $f$ is completely multiplicative if and only if $f\left(p^{n}\right)=f(p)^{n}$ for all primes $p$ and all integers $n \geq 1$.


## Properties of Multiplicative Functions

## Theorem

Let $f$ be a multiplicative function. Then

- $\quad f(1)=1$
:- $f$ is completely multiplicative if and only if $f\left(p^{n}\right)=f(p)^{n}$ for all primes $p$ and all integers $n \geq 1$.


## Dirichlet Convolution Theorem

If $f$ and $g$ are multiplicative functions, then their Dirichlet convolution $f * g$ given by $(f * g)(n)=\sum_{e \mid n} f(e) \cdot g\left(\frac{n}{e}\right)$ is also multiplicative.

## Properties of Multiplicative Functions

## Theorem

Let $f$ be a multiplicative function. Then
: $\quad f(1)=1$
:- $f$ is completely multiplicative if and only if $f\left(p^{n}\right)=f(p)^{n}$ for all primes $p$ and all integers $n \geq 1$.

## Dirichlet Convolution Theorem

If $f$ and $g$ are multiplicative functions, then their Dirichlet convolution $f * g$ given by $(f * g)(n)=\sum_{e \mid n} f(e) \cdot g\left(\frac{n}{e}\right)$ is also multiplicative.

Proof: Let $m$ and $n$ be coprime integers. Then

$$
\begin{aligned}
(f * g)(m n) & =\sum_{e \mid m n} f(e) \cdot g\left(\frac{m n}{e}\right)=\sum_{e_{1} \mid m} \sum_{e_{2} \mid n} f\left(e_{1} \cdot e_{2}\right) \cdot g\left(\frac{m n}{e_{1} \cdot e_{2}}\right) \\
& =\left(\sum_{e_{1} \mid m} f\left(e_{1}\right) \cdot g\left(\frac{m}{e_{1}}\right)\right) \cdot\left(\sum_{e_{2} \mid n} f\left(e_{2}\right) \cdot g\left(\frac{n}{e_{2}}\right)\right) \\
& =(f * g)(m) \cdot(f * g)(n) .
\end{aligned}
$$

## The Big-O (Tool 1)

Let $g(x)>0$ for all $x \geq a$, we say

$$
f(x)=O(g(x))
$$

if there exists $M>0$ and $x_{0} \geq a$ such that $|f(x)| \leq M g(x)$ for all $x \geq x_{0}$.

## The Big-O (Tool 1)

Let $g(x)>0$ for all $x \geq a$, we say

$$
f(x)=O(g(x))
$$

if there exists $M>0$ and $x_{0} \geq a$ such that $|f(x)| \leq M g(x)$ for all $x \geq x_{0}$.
If $f_{1}(x)=O\left(g_{1}(x)\right), f_{2}(x)=O\left(g_{2}(x)\right)$, then

$$
\begin{gathered}
\left(f_{1}+f_{2}\right)(x)=O\left(g_{1}(x)+g_{2}(x)\right)=O\left(\max \left\{g_{1}(x), g_{2}(x)\right\}\right) \\
\left(f_{1} f_{2}\right)(x)=O\left(\left(g_{1} g_{2}\right)(x)\right)
\end{gathered}
$$

Example: $\quad x^{2}+2 x+1=O\left(x^{2}\right), \log x=O\left(x^{1 / 1000}\right)$.

## The Big-O (Tool 1)

Let $g(x)>0$ for all $x \geq a$, we say

$$
f(x)=O(g(x))
$$

if there exists $M>0$ and $x_{0} \geq a$ such that $|f(x)| \leq M g(x)$ for all $x \geq x_{0}$.
If $f_{1}(x)=O\left(g_{1}(x)\right), f_{2}(x)=O\left(g_{2}(x)\right)$, then

$$
\begin{gathered}
\left(f_{1}+f_{2}\right)(x)=O\left(g_{1}(x)+g_{2}(x)\right)=O\left(\max \left\{g_{1}(x), g_{2}(x)\right\}\right), \\
\left(f_{1} f_{2}\right)(x)=O\left(\left(g_{1} g_{2}\right)(x)\right)
\end{gathered}
$$

Example: $\quad x^{2}+2 x+1=O\left(x^{2}\right), \log x=O\left(x^{1 / 1000}\right)$.

## Asymptotic

We say $f$ is asymptotic to $g$ (or write $f(x) \sim g(x)$ ) if $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1$.
Example: $\quad x \sim x+1, e^{x}+x^{100}+\log x \sim e^{x}$.

## Euler's summation formula (Tool 2)

If $f$ has a continuous derivative $f^{\prime}$ on the interval $[1, x]$, then

$$
\sum_{1<n \leq x} f(n)=\int_{1}^{x} f(t) d t+\int_{1}^{x}(t-[t]) f^{\prime}(t) d t+f(1)([x]-x)
$$

where $[t]$ denotes the greatest integer $\leq t$.

## Euler's summation formula (Tool 2)

If $f$ has a continuous derivative $f^{\prime}$ on the interval $[1, x]$, then

$$
\sum_{1<n \leq x} f(n)=\int_{1}^{x} f(t) d t+\int_{1}^{x}(t-[t]) f^{\prime}(t) d t+f(1)([x]-x)
$$

where $[t]$ denotes the greatest integer $\leq t$.

## Applications (Completely multiplicative $f$ )

(a) $\sum_{n \leq x} \frac{1}{n}=\log x+C+O\left(\frac{1}{x}\right)$,
(b) $\sum_{n \leq x} n^{\alpha}=\frac{x^{\alpha+1}}{\alpha+1}+O\left(x^{\alpha}\right)$ if $\alpha \geq 0$.

Euler's constant $C=\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} \frac{1}{n}-\log N\right)$.

## Euler's summation formula (Tool 2)

If $f$ has a continuous derivative $f^{\prime}$ on the interval $[1, x]$, then

$$
\sum_{1<n \leq x} f(n)=\int_{1}^{x} f(t) d t+\int_{1}^{x}(t-[t]) f^{\prime}(t) d t+f(1)([x]-x)
$$

where $[t]$ denotes the greatest integer $\leq t$.

## Applications (Completely multiplicative $f$ )

(a) $\sum_{n \leq x} \frac{1}{n}=\log x+C+O\left(\frac{1}{x}\right)$,
(b) $\sum_{n \leq x} n^{\alpha}=\frac{x^{\alpha+1}}{\alpha+1}+O\left(x^{\alpha}\right)$ if $\alpha \geq 0$.

Euler's constant $C=\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} \frac{1}{n}-\log N\right)$.
Proof of (a):

$$
\begin{aligned}
\sum_{1 \leq n \leq x} \frac{1}{n} & =1+\sum_{1<n \leq x} \frac{1}{n}=1+\int_{1}^{x} \frac{1}{t} d t-\int_{1}^{x} \frac{t-[t]}{t^{2}} d t-\frac{x-[x]}{x} \\
& =\log x+\underbrace{1-\int_{1}^{\infty} \frac{t-[t]}{t^{2}} d t}_{C}+\underbrace{\int_{x}^{\infty} \frac{t-[t]}{t^{2}} d t}_{<1 / x}+O\left(\frac{1}{x}\right)
\end{aligned}
$$

## Distribution of the Divisor function

Recall $d(n)=\sum_{e \mid n} 1$. We establish

$$
\frac{1}{x} \sum_{n \leq x} d(n) \sim \log x
$$

Specifically, $\frac{1}{x} \sum_{n \leq x} d(n)=\log x+(2 C+1)+O(1 / \sqrt{x})$.

## Distribution of the Divisor function

Recall $d(n)=\sum_{e \mid n} 1$. We establish

$$
\frac{1}{x} \sum_{n \leq x} d(n) \sim \log x
$$

Specifically, $\frac{1}{x} \sum_{n \leq x} d(n)=\log x+(2 C+1)+O(1 / \sqrt{x})$.

## Proof:

$$
\sum_{n \leq x} d(n)=\sum_{n \leq x} \sum_{e \mid n} 1=\sum_{e \leq x} \sum_{n \leq x / e} 1 \stackrel{(b)}{=} \sum_{e \leq x}\left(\frac{x}{e}+O(1)\right) \stackrel{(a)}{=} x \log x+O(x)
$$

## Distribution of the Divisor function

Recall $d(n)=\sum_{e \mid n} 1$. We establish

$$
\frac{1}{x} \sum_{n \leq x} d(n) \sim \log x
$$

Specifically, $\frac{1}{x} \sum_{n \leq x} d(n)=\log x+(2 C+1)+O(1 / \sqrt{x})$.

## Proof:

$$
\sum_{n \leq x} d(n)=\sum_{n \leq x} \sum_{e \mid n} 1=\sum_{e \leq x} \sum_{n \leq x / e} 1 \stackrel{(b)}{=} \sum_{e \leq x}\left(\frac{x}{e}+O(1)\right) \stackrel{(a)}{=} x \log x+O(x)
$$

## Generalized Divisor function

Let $n \geq 1$ be an integer, $\sigma_{\alpha}(n)=\sum_{e \mid n} e^{\alpha}$ for any real $\alpha$

$$
\frac{1}{x} \sum_{n \leq x} \sigma_{\alpha}(n) \sim \begin{cases}\frac{\zeta(\alpha+1)}{\alpha+1} x^{\alpha} & \text { if } \alpha>0 \\ \zeta(-\alpha+1) & \text { if } \alpha<0\end{cases}
$$

where $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ is the Riemann zeta function defined on $s>1$.

## Möbius Inversion Formula (Tool 3) and its application

Recall the Möbius function defined as $\mu(1)=1$, and if $n>1, n=\prod_{k=1}^{n} p_{k}^{a_{k}}$.

$$
\mu(n)= \begin{cases}(-1)^{n} & \text { if } a_{1}=\ldots=a_{n}=1 \\ 0 & \text { otherwise }\end{cases}
$$

## Möbius Inversion Formula (Tool 3) and its application

Recall the Möbius function defined as $\mu(1)=1$, and if $n>1, n=\prod_{k=1}^{n} p_{k}^{a_{k}}$.

$$
\mu(n)= \begin{cases}(-1)^{n} & \text { if } a_{1}=\ldots=a_{n}=1 \\ 0 & \text { otherwise }\end{cases}
$$

## Möbius Inversion Formula

Let $f$ and $g$ be two arithmetic functions. Then

$$
f(n)=\sum_{e \mid n} g(e) \quad \Longleftrightarrow \quad g(n)=\sum_{e \mid n} \mu(e) f\left(\frac{n}{e}\right)
$$

## Möbius Inversion Formula (Tool 3) and its application

Recall the Möbius function defined as $\mu(1)=1$, and if $n>1, n=\prod_{k=1}^{n} p_{k}^{a_{k}}$.

$$
\mu(n)= \begin{cases}(-1)^{n} & \text { if } a_{1}=\ldots=a_{n}=1 \\ 0 & \text { otherwise }\end{cases}
$$

## Möbius Inversion Formula

Let $f$ and $g$ be two arithmetic functions. Then

$$
f(n)=\sum_{e \mid n} g(e) \quad \Longleftrightarrow \quad g(n)=\sum_{e \mid n} \mu(e) f\left(\frac{n}{e}\right)
$$

For $n \geq 1, \phi(n)$ is defined as

$$
\phi(n)=\sum_{\substack{1 \leq k \leq n \\ \operatorname{gcd}(n, k)=1}} 1
$$

Thus by Möbius Inversion Formula

$$
\sum_{e \mid n} \phi(e)=n \quad \Longleftrightarrow \quad \phi(n)=\sum_{e \mid n} \mu(e) \frac{n}{e}
$$

## Distribution of Euler $\phi$-function

## Recall

$$
\text { (a) } \sum_{n \leq x} \frac{1}{n}=\log x+O(1), \quad \text { and } \quad \text { (b) } \sum_{n \leq x} n=\frac{x^{2}}{2}+O(x) \text {. }
$$

## Distribution of Euler $\phi$-function

## Recall

$$
\text { (a) } \sum_{n \leq x} \frac{1}{n}=\log x+O(1), \quad \text { and } \quad \text { (b) } \sum_{n \leq x} n=\frac{x^{2}}{2}+O(x) \text {. }
$$

For $x>1$ we have

$$
\frac{1}{x} \sum_{n \leq x} \phi(n)=\frac{3}{\pi^{2}} x+O(\log x)
$$

## Distribution of Euler $\phi$-function

Recall

$$
\text { (a) } \sum_{n \leq x} \frac{1}{n}=\log x+O(1), \quad \text { and } \quad \text { (b) } \sum_{n \leq x} n=\frac{x^{2}}{2}+O(x) \text {. }
$$

For $x>1$ we have

$$
\frac{1}{x} \sum_{n \leq x} \phi(n)=\frac{3}{\pi^{2}} x+O(\log x)
$$

Proof: One can show that $\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{2}}=\frac{6}{\pi^{2}}$. Then

$$
\begin{aligned}
\sum_{n \leq x} \phi(n) & =\sum_{n \leq x} \sum_{e \mid n} \mu(e) \frac{n}{e}=\sum_{\substack{q, e \\
q e \leq x}} \mu(e) q \\
& =\sum_{e \leq x} \mu(e) \sum_{q \leq x / e} q \\
& \stackrel{(b)}{=} \frac{1}{2} x^{2} \sum_{e \leq x} \frac{\mu(e)}{e^{2}}+O\left(x \sum_{e \leq x} \frac{1}{e}\right) \\
& \stackrel{(a)}{=} \frac{3}{\pi^{2}} x^{2}+O(x \log x)
\end{aligned}
$$



