Pollard's Rho Algorithm

Jazlynn Leung

April 2024

Introduction

Pollard's Rho algorithm is a method for determining a factor of a composite number. The algorithm makes use of the "birthday paradox" and the "tortoise and hare" concept.

Outline

Given a composite number n, we want to iteratively generate k "random" numbers $t_{1}, t_{2}, \cdots, t_{k}$ by using a "randomizer" function $g(t)$. We usually use $g(t)=t^{2}+c$, for some number c. We'll use $c=1$ to demonstrate.

We start by selecting a starting value t_{0}. We'll use $t_{0}=2$ to demonstrate. This is our "tortoise". We recursively define $t_{i}=g\left(t_{i-1}\right)$ for $i \geq 1$.

We then define $h_{0}=t_{0}$. This is our "hare". We recursively define $h_{i}=g\left(g\left(h_{i-1}\right)\right)$ for $i \geq 1$. Notice that $h_{i}=t_{2 i}$ for each i.

Iteration

We now iterate along the sequences t_{i} and h_{i} until a certain condition is satisfied. In particular, we calculate $d=\operatorname{gcd}\left(h_{i}-t_{i}, n\right)$ on the i-th iteration using the Euclidean algorithm.

Case 1: $d=1$:
We have gained no information, so we increment i and try again.
Case 2: $d=n$: We have gained no information, and we never will using these c and t_{0} values. We terminate the algorithm and retry with new c and/or t_{0} values.

Case 3: $1<d<n$: We have found a non-trivial factor d of n, and the algorithm terminates successfully.

Tortoise and Hare

The tortoise and hare concept is the basis of Floyd's cycle detection algorithm, which searches for a loop in the sequence of t_{i} 's when taken mod d. One can show that such a loop always exists mod d, and that there must be some i such that $h_{i}-t_{i}=t_{2 i}-t_{j}$ is divisible by d. The existence of the loop gives rise to the Rho shape. In most cases, $h_{i}-t_{i}$ will not be divisible by n, and thus $\operatorname{gcd}\left(h_{i}-t_{i}, n\right)$ is some proper divisor of n (usually d, but maybe a multiple of d). This corresponds to case 2 . If $h_{i}-t_{i}$ is divisible by n, we get no useful information, corresponding to case 3 .

The Birthday Paradox

In a room of 23 people, there are 23 ! $\binom{365}{23}$ ways in which each could have a distinct birthday. There are 365^{23} possible ways in which they could have not necessarily distinct birthdays. Thus, the chance that some pair of them share a birthday is

$$
1-\frac{23!\binom{365}{23}}{365^{23}}>50 \%
$$

In other words, it is more likely than not that some pair of people share a birthday out of just 23 people.

The more general mathematical fact is that about \sqrt{n} selections from n items are required to get a better than even chance of selecting some item twice.

The Birthday Paradox

The birthday paradox applies to the Pollard rho algorithm by estimating how quickly the sequence of t_{i} 's will loop. Mod d, there are d possibilities for each t_{i}, so after about \sqrt{d} terms are computed, there is a better than even chance that two of them repeat, leading to a loop.

Thank you for listening!

