Mermin-Peres Magic Square Game

Jennifer Zhu
Texas A\&M University

February 27, 2023

(1) Magic Square Game

(2) Quantum Solution

(3) References

(1) Magic Square Game

(2) Quantum Solution

(3) References

Magic Square Game

Rules of the Game:

- $x_{i} \in\{0,1\}$
- Row sums are even.
- Column sums are odd.

x_{1}	x_{2}	x_{3}
x_{4}	x_{5}	x_{6}
x_{7}	x_{8}	x_{9}

- Referee assigns Alice (A) a row and Bob (B) a column. A and B return triplets of bits that follow the sum rules and also agree on the intersecting square.
- Alice and Bob can decide on a strategy beforehand but cannot communicate during the game.

Magic Square Game

Can A and B come up with a winning strategy?

x_{1}	x_{2}	x_{3}
x_{4}	x_{5}	x_{6}
x_{7}	x_{8}	x_{9}

- No.
- Exercise: The best they can do is win $8 / 9$ of the time.

(1) Magic Square Game

(2) Quantum Solution
(3) References

Basic Quantum Information

- Classical bits are elements of $\{0,1\}$.
- Quantum bits are unit vectors $|\psi\rangle \in \operatorname{span}\{|0\rangle,|1\rangle\}$.
- Quantum Measurement: "Forcing" a quantum bit to become classical.
- Can assume this is a unitary acting on $|\psi\rangle$.
(Think of this as rotating $|\psi\rangle$.)
- If $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ and $U=I d$, then $|\psi\rangle$ has a $|\alpha|^{2}$ chance of becoming $|0\rangle$ and a $|\beta|^{2}$ chance of becoming $|1\rangle$.

Quantum Entanglement

- A quantum bit lives in \mathbb{C}^{2}. A quantum state lives in $\underbrace{\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}}_{n \text { times }}$.
- In the Magic Square Game, our quantum state will live in

$$
|\psi\rangle \in \underbrace{\mathbb{C}^{2} \otimes \mathbb{C}^{2}}_{\mathcal{H}_{A}} \otimes \underbrace{\mathbb{C}^{2} \otimes \mathbb{C}^{2}}_{\mathcal{H}_{B}} .
$$

A quantum state is separable if it can be written as a simple tensor in $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$. Otherwise it is entangled.

- Note: $|0101\rangle$ is shorthand for $|0\rangle \otimes|1\rangle \otimes|0\rangle \otimes|1\rangle$.

Quantum Strategy for Magic Square Game

- Alice and Bob fix a quantum state $|\psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$:

$$
|\psi\rangle=\frac{1}{2}|0011\rangle-\frac{1}{2}|0110\rangle-\frac{1}{2}|1001\rangle+\frac{1}{2}|1100\rangle
$$

Alice can only measure the part of the quantum state in \mathcal{H}_{A}, and similarly for Bob.

- Alice and Bob come up with measurements that they will implement depending on what row/column the referee assigns.
- The measurements on their respective Hilbert spaces:

$$
\begin{array}{lll}
A_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
i & 0 & 0 & 1 \\
0 & -\mathrm{i} & 1 & 0 \\
0 & i & 1 & 0 \\
1 & 0 & 0 & i
\end{array}\right) & A_{2}=\frac{1}{2}\left(\begin{array}{cccc}
i & 1 & 1 & i \\
-i & 1 & -1 & i \\
i & 1 & -1 & -i \\
-i & 1 & 1 & -i
\end{array}\right) & A_{3}=\frac{1}{2}\left(\begin{array}{cccc}
-1 & -1 & -1 & 1 \\
1 & 1 & -1 & 1 \\
1 & -1 & 1 & 1 \\
1 & -1 & -1 & -1
\end{array}\right) \\
B_{1}=\frac{1}{2}\left(\begin{array}{cccc}
i & -i & 1 & 1 \\
-i & -i & 1 & -1 \\
1 & 1 & -i & i \\
-i & i & 1 & 1
\end{array}\right) & B_{2}=\frac{1}{2}\left(\begin{array}{cccc}
-1 & i & 1 & i \\
1 & i & 1 & -i \\
1 & -i & 1 & i \\
-1 & -i & 1 & -i
\end{array}\right) & B_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
-1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & -1 & 0
\end{array}\right)
\end{array}
$$

Example

Suppose the referee gives Alice row 2 and Bob column 3. Alice and Bob "rotate" $|\psi\rangle$ by $A_{2} \otimes B_{3}$

$$
\begin{array}{r}
A_{2} \otimes B_{3}|\psi\rangle=\frac{1}{2 \sqrt{2}}[|0000\rangle-|0010\rangle-|0101\rangle+|0111\rangle \\
|1001\rangle+|1011\rangle-|1100\rangle-|1110\rangle]
\end{array}
$$

and then the resulting quantum state "snaps" into one of these basis vectors with equal probability (since the coefficients all have the same modulus).

Example (cont.)

$$
\begin{aligned}
A_{2} \otimes B_{3}|\psi\rangle=\frac{1}{2 \sqrt{2}} & {[|0000\rangle-|0010\rangle-|0101\rangle+|0111\rangle} \\
& |1001\rangle+|1011\rangle-|1100\rangle-|1110\rangle]
\end{aligned}
$$

- Suppose $A_{2} \otimes B_{3}|\psi\rangle \mapsto|1011\rangle$.
- Alice: first two row entries are 10 , so her last entry must be 1 (to sum to an even number).
- Bob: first two column entries are 11 , so his last

		1
1	0	1
		1

- They win!

Summary

- This works for every $A_{j} \otimes B_{k}$, and every possible measurement outcome.
- Thus Alice and Bob win with 100% probability using the quantum strategy.

Further Exploration

The Magic Square Game is an example of a nonlocal game in which there exists a quantum strategy that can beat every classical one.

There are even larger classes of games in which we relax these assumptions - what is the best possible strategy over all finite dimensional \mathcal{H}_{A} and \mathcal{H}_{B} ? What if we allow \mathcal{H}_{A} and \mathcal{H}_{B} to be infinite dimensional? What if $\mathcal{H}_{A}=\mathcal{H}_{B}$?

(1) Magic Square Game

(2) Quantum Solution

(3) References
[AMR $\left.{ }^{+} 17\right]$ Albert Atserias, Laura Mančinska, David E. Roberson, Robert Šámal, Simone Severini, and Antonios Varvitsiotis.
Quantum and non-signalling graph isomorphisms, 2017.
[BBT05] Gilles Brassard, Anne Broadbent, and Alain Tapp. Quantum pseudo-telepathy. Foundations of Physics, 35(11):1877-1907, Nov 2005.
[Mer90] N. David Mermin.
Simple unified form for the major no-hidden-variables theorems.
Phys. Rev. Lett., 65:3373-3376, Dec 1990.
[Pau16] Vern Paulsen.
Entanglement and non-locality course notes, 2016.

