Mermin-Peres Magic Square Game

Jennifer Zhu

Texas A&M University

February 27, 2023

Jennifer Zhu Mermin-Peres Magic Square Game Texas A&M University

< < >> < <</>

2 Quantum Solution

Jennifer Zhu Mermin-Peres Magic Square Game ・ロ・・西・・川・・田・ ・田・ うろの

2 Quantum Solution

3 References

Jennifer Zhu Mermin-Peres Magic Square Game Texas A&M University

3 / 16

Magic Square Game

Quantum	So	luti	or	
000000				

References

Rules of the Game:

- $x_i \in \{0, 1\}$
- Row sums are even.
- Column sums are odd.
- Referee assigns Alice (A) a row and Bob (B) a column. A and B return triplets of bits that follow the sum rules and also agree on the intersecting square.
- Alice and Bob can decide on a strategy beforehand but cannot communicate during the game.

x_1	<i>x</i> ₂	<i>x</i> 3
<i>x</i> ₄	<i>x</i> 5	<i>x</i> 6
<i>x</i> 7	<i>x</i> 8	X9

Jennifer Zhu Mermin-Peres Magic Square Game

Quantum Solution

References

Magic Square Game

Can A and B come up with a winning strategy?

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3
<i>x</i> 4	<i>x</i> 5	<i>x</i> 6
<i>X</i> 7	<i>x</i> 8	<i>X</i> 9

- No.
- Exercise: The best they can do is win 8/9 of the time.

< < >> < <</>

Jennifer Zhu

Mermin-Peres Magic Square Game

2 Quantum Solution

3 References

- ▲ 日 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ ■

Jennifer Zhu Mermin-Peres Magic Square Game Texas A&M University

6 / 16

References

Basic Quantum Information

- Classical bits are elements of {0,1}.
- Quantum bits are unit vectors $|\psi\rangle \in \text{span}\{|0\rangle, |1\rangle\}.$
- Quantum Measurement: "Forcing" a quantum bit to become classical.
 - Can assume this is a unitary acting on |ψ⟩.
 (Think of this as rotating |ψ⟩.)
 - If $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ and U = Id, then $|\psi\rangle$ has a $|\alpha|^2$ chance of becoming $|0\rangle$ and a $|\beta|^2$ chance of becoming $|1\rangle$.

Jennifer Zhu

References

Quantum Entanglement

Magic Square Game

- A quantum bit lives in \mathbb{C}^2 . A quantum *state* lives in $\underbrace{\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2}_{n \text{ times}}$.
- In the Magic Square Game, our quantum state will live in

$$|\psi\rangle \in \underbrace{\mathbb{C}^2 \otimes \mathbb{C}^2}_{\mathcal{H}_A} \otimes \underbrace{\mathbb{C}^2 \otimes \mathbb{C}^2}_{\mathcal{H}_B}.$$

A quantum state is *separable* if it can be written as a simple tensor in $\mathcal{H}_A \otimes \mathcal{H}_B$. Otherwise it is *entangled*.

< < >> < <</>

• Note: $|0101\rangle$ is shorthand for $|0\rangle \otimes |1\rangle \otimes |0\rangle \otimes |1\rangle$.

Jennifer Zhu

Mermin-Peres Magic Square Game

Quantum Solution

References

Quantum Strategy for Magic Square Game

• Alice and Bob fix a quantum state $|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$:

$$|\psi\rangle = \frac{1}{2}|0011\rangle - \frac{1}{2}|0110\rangle - \frac{1}{2}|1001\rangle + \frac{1}{2}|1100\rangle$$

Alice can only measure the part of the quantum state in $\mathcal{H}_{\mathcal{A}},$ and similarly for Bob.

- Alice and Bob come up with measurements that they will implement *depending on what row/column the referee assigns*.
- The measurements on their respective Hilbert spaces:

Jennifer Zhu

Example

Suppose the referee gives Alice row 2 and Bob column 3. Alice and Bob "rotate" $|\psi\rangle$ by $A_2\otimes B_3$

$$egin{aligned} A_2 \otimes B_3 |\psi
angle &= rac{1}{2\sqrt{2}} \Big[|0000
angle - |0010
angle - |0101
angle + |0111
angle \ |1001
angle + |1011
angle - |1100
angle - |1110
angle \Big] \end{aligned}$$

and then the resulting quantum state "snaps" into one of these basis vectors with equal probability (since the coefficients all have the same modulus).

Quantum Solution

References

Example (cont.)

$$egin{aligned} A_2 \otimes B_3 |\psi
angle &= rac{1}{2\sqrt{2}} \Big[|0000
angle - |0010
angle - |0101
angle + |0111
angle \ |1001
angle + |1011
angle - |1100
angle - |1110
angle \Big] \end{aligned}$$

- Suppose $A_2 \otimes B_3 |\psi\rangle \mapsto |1011\rangle$.
- Alice: first two row entries are 10, so her last entry must be 1 (to sum to an even number).
- Bob: first two column entries are 11, so his last entry must be 1 (to sum to an odd number).

• They win!

- This works for every $A_j \otimes B_k$, and every possible measurement outcome.
- Thus Alice and Bob win with *100% probability* using the quantum strategy.

Jennifer Zhu Mermin-Peres Magic Square Game Texas A&M University

< < >> < <</>

Further Exploration

The Magic Square Game is an example of a nonlocal game in which there exists a quantum strategy that can beat every classical one.

There are even larger classes of games in which we relax these assumptions – what is the best possible strategy over all finite dimensional \mathcal{H}_A and \mathcal{H}_B ? What if we allow \mathcal{H}_A and \mathcal{H}_B to be infinite dimensional? What if $\mathcal{H}_A = \mathcal{H}_B$?

2 Quantum Solution

Jennifer Zhu Mermin-Peres Magic Square Game Texas A&M University

14 / 16

References ○●○

[AMR⁺17] Albert Atserias, Laura Mančinska, David E. Roberson, Robert Šámal, Simone Severini, and Antonios Varvitsiotis.

Quantum and non-signalling graph isomorphisms, 2017.

- [BBT05] Gilles Brassard, Anne Broadbent, and Alain Tapp. Quantum pseudo-telepathy. Foundations of Physics, 35(11):1877–1907, Nov 2005.
- [Mer90] N. David Mermin. Simple unified form for the major no-hidden-variables theorems. *Phys. Rev. Lett.*, 65:3373–3376, Dec 1990.

[Pau16] Vern Paulsen. Entanglement and non-locality course notes, 2016.

Thank you!

Jennifer Zhu Mermin-Peres Magic Square Game

16 / 16