Measurement Error and Misclassification: Introduction

Sections 2.1 & 2.2 Lillian Li

Why Should We Care About Measurement Error?

What Happens When We Ignore Measurement Error?

Consequences:

- Degraded quality of inference
- Biased parameter estimates
- Incorrect conclusions

Common in: Medical studies, epidemiology, survey research, longitudinal studies

What is Measurement Error?

Our Definition: Any setting where the ideal measurement of a variable may differ from the actual value obtained by data collection.

Types of Error:

- Systematic Error
 (Bias): Repeatable, from instrument/procedure imperfections
- Random Error:
 Inherent variability,
 unreproducible
- Sampling Error: Due to using sample vs. entire population

Why Do We Get Measurement Error?

Common Sources:

- **1. Physical limitations:** Hard to access (e.g., coronary arteries → carotid arteries)
- 2. Cost constraints: Expensive precise measurements
- **3. Nature of variable:** Some things can't be measured exactly (radiation exposure)
- 4. Temporal variation: Variables change over time
- **5. Ethical considerations:** Intentional alteration for privacy $(X^* = X + e)$

Real Example: Cancer risk from radiation exposure - impossible to measure precisely

Notation and Terminology

True Variables:

- Y: True response variable
- X: True covariate(s)
- Z: Error-free covariates

Measured Variables:

X*: Surrogate/measured covariate(s)

Illustrating Measurement Error Effects

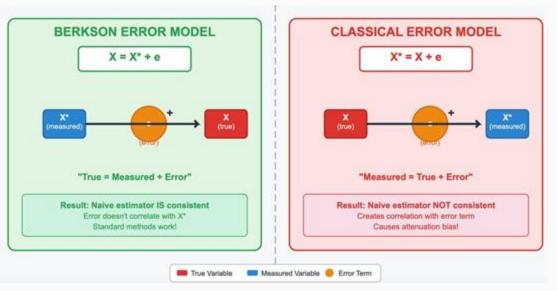
Setup: Simple linear regression example

- Model: $Y_i = \beta_0 + \beta_x X_i + \epsilon_i$
- True covariate X_i not observed
- Surrogate X_i* available instead

Key Questions:

- 1. What happens when we use X_i^* instead of X_i ?
- 2. Does the relationship between X_i and X_i * matter?
- 3. Can we still get valid estimates?

Two Measurement Error Models



Model 1 (Berkson Error): $X_i = X_i^* + e_i$

- True value = Measured value + Error
- Naive estimator IS consistent.

Model 2 (Classical Error): $X_i^* = X_i + e_i$

- Measured value = True value + Error
- Naive estimator IS NOT consistent

The Attenuation Effect

Under Classical Error Model $(X_i^* = X_i + e_i)$:

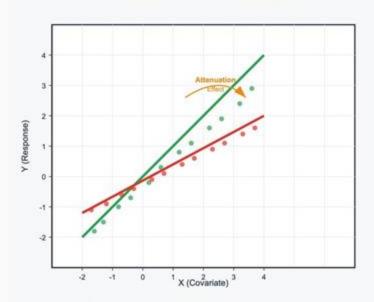
Naive estimator converges to: $\beta^*_x = \omega \beta_x$

Where reliability ratio: $\omega = \sigma_x^2/(\sigma_x^2 + \sigma_e^2) \le 1$

Result: Attenuation bias - estimates are shrunk toward zero

Why this happens: Error in X_i^* creates correlation between predictor and error term in the regression

Attenuation Effect in Classical Error Model



Classical measurement error causes the slope to be attenuated (shrunk toward zero)

The stronger the measurement error (smaller ex), the flatter the observed relationship.

Simulation Results - Classical Error

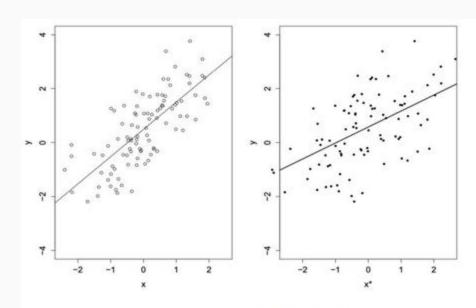


Fig. 2.1. Effects of Measurement Error Model (2.3) on Simple Linear Regression

Simulation Setup:

- $n = 100, \beta_0 = 0.5, \beta_x = 1.0$
- $X_i \sim N(0,1), e_i \sim N(0,1)$
- Model: $X_i^* = X_i + e_i$

Results:

- Left panel: True data (X_i, Y_i) steeper
 slope
- Right panel: Surrogate data (X_i*, Y_i) flatter slope
- Clear attenuation effect visible

Berkson Error Results

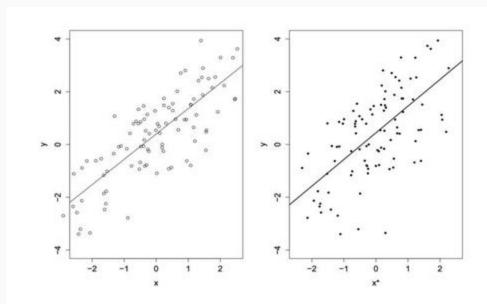


Fig. 2.2. Effects of Measurement Error Model (2.2) on Simple Linear Regression

Simulation with Berkson Error:

- Model: $X_i = X_i^* + e_i$
- Same simulation parameters

Results:

- Both panels show parallel regression lines
- Naive estimator remains consistent
- Only variance of error term changes

Why the Difference?

Classical Error $(X_i^* = X_i + e_i)$:

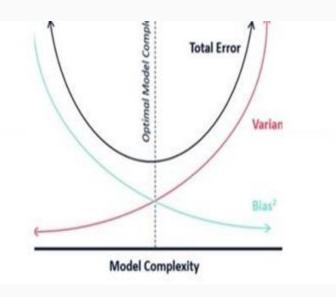
- Substituting into $Y_i = \beta_0 + \beta_x X_i + \epsilon_i$ gives:
- $Y_i = \beta_0 + \beta_x X_i^* + \epsilon_i^*$ where $\epsilon_i^* = \epsilon_i \beta_x e_i^*$
- Problem: biased estimates; ε_i is correlated with X_i !

Berkson Error $(X_i = X_i^* + e_i)$:

- Substituting gives: $Y_i = \beta_0 + \beta_x X_i^* + \epsilon_i^{**}$ where $\epsilon_i^{**} = \epsilon_i + \beta_x e_i$
- Good news: consistent estimates; ε_i^{**} is uncorrelated with X_i^{*}

Mathematical Substitution Process: Why Error Structure Matters Original Model: $Y = \beta_0 + \beta_0 X + \epsilon$ Two Different Substitution Paths Classical Error: X* = X + e Berkson Error: X = X* + e Step 1: Rearrange error model Step 1: Direct substitution X = X' + e (already solved for X) Step 2: Substitute into original model Step 2: Substitute into original model $Y = B_0 + B_0(X^* - e) + \epsilon$ $Y = B_0 + B_0(X^* + e) + \epsilon$ Y = Ba + B.X" - B.0 + E Y = Bo + B.X" + B.R + E Step 3: Rearrange terms Step 3: Rearrange terms $Y = \beta_0 + \beta_0 X^* + (\epsilon + \beta_0 e)$ $Y = B_0 + B_0X^* + (c - B_0e)$ New error term: $\varepsilon^{**} = \varepsilon + \beta_{eff}$ New error term: $\varepsilon^* = \varepsilon - E_{\rm eff}$ **▲ PROBLEM!** ✓ NO PROBLEM! $Cov(X^*, \epsilon^*) = Cov(X^*, \epsilon - \beta_{v0})$ $Cov(X^*, \epsilon^{**}) = Cov(X^*, \epsilon + \beta_v e)$ = Cov(X*, -8.e) = -8.Cov(X*, e) = Cov(X*, r) + 5.Cov(X*, e) # 0 (Correlation exists!) = 0 + 0 = 0 (No correlation!) Result: Blased estimates (attenuation) Result: Consistent estimates

Practical Implications



Key Lessons:

- Measurement error matters can severely bias results
- **2. Error structure is crucial** determines if naive analysis works
- **3. Attenuation is common** classical error shrinks estimates toward zero
- **4. Problem-specific analysis needed** no universal solution

Trade-offs:

- Naive estimators: Biased but lower variance
- Corrected estimators: Unbiased but higher variance
- Need sufficient sample size for correction to be worthwhile

Looking Ahead

This was just the beginning:

- Simple linear regression with one covariate
- More complex models have additional complications
- Multiple covariates create multidimensional problems
- Nonlinear models can reverse signs, not just attenuate

General Principle: The nature and degree of measurement error effects depend on:

- Response model form
- Measurement error model structure
- Variable relationships and variability

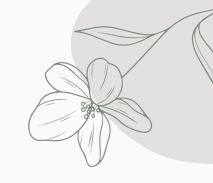
Next steps: Explore correction methods and more complex scenarios

Summary

Main Points:

- 1. Measurement error is ubiquitous and consequential
- 2. The relationship between true and measured variables determines bias
- 3. Classical error $(X^* = X + e)$ causes attenuation bias
- 4. Berkson error $(X = X^* + e)$ preserves consistency
- 5. Ignoring measurement error can lead to wrong conclusions

Bottom Line: Understanding measurement error structure is essential for valid statistical inference.



Please keep this slide for attribution

