Applying robust optimization to the green vehicle routing problem

Crystal Zhou and Xinyue Fan

Directed reading program - Women in math Mentor: Matheus Jun Ota

May 9, 2024

Capacitated vehicle routing problem (CVRP)

Capacitated vehicle routing problem (CVRP)

- $G = (N \cup \{0\}, A)$
- N : customers
- 0: depot
- k : number of vehicles
- Ca: arc cost
- q_i : demand of i
- Q: vehicle capacity

Green vehicle routing problem (G-VRP)

 $G = (N \cup F \cup \{0\}, A)$ $N, k, c \in \mathbb{R}^A, Q, q \in \mathbb{R}^N$

- t_a : energy consumption
- B : battery capacity
- F : alternative fuel stations (AFS)

Green vehicle routing problem (G-VRP)

 $G = (N \cup F \cup \{0\}, A)$ $N, k, c \in \mathbb{R}^A, Q, q \in \mathbb{R}^N$

- t_a : energy consumption
- B : battery capacity
- F : alternative fuel stations (AFS)

G-VRP with uncertain energy consumption

$$G = (N \cup F \cup \{0\}, A)$$

 $N, k, c \in \mathbb{R}^A, Q, q \in \mathbb{R}^N$

 $\begin{array}{l} t_a : \text{ energy consumption} \\ t_a : \text{ random variable for} \\ \text{ energy consumption} \\ (\text{avg. } \overline{t}_a \text{ and std. dev. } \widetilde{t}_a) \\ B : \text{ battery capacity} \\ F : \text{ alternative fuel} \\ \text{ stations (AFS)} \end{array}$

G-VRP with uncertain energy consumption

Robust G-VRP (RO-G-VRP)

Let \mathcal{T} be the set of all possible realizations of t. We want to ensure that we have enough energy even in the worst case realization of t.

Green logistics

Development of systems with increased energy efficiency and lower carbon emissions (Leggieri and Haouari 2017).

[1] "A green vehicle routing problem", Erdoğan and Miller-Hooks, 2012.

Green logistics

Development of systems with increased energy efficiency and lower carbon emissions (Leggieri and Haouari 2017).

[1] "A green vehicle routing problem", Erdoğan and Miller-Hooks, 2012.

Branch-cut-and-price (BCP) algorithms for VRP's

State-of-the-art exact algorithms for VRP's combine cut and column-generation.

VRPSolver framework ([2] "A generic exact solver for vehicle routing and related problems", Pessoa et al., 2020).

Green logistics

Development of systems with increased energy efficiency and lower carbon emissions (Leggieri and Haouari 2017).

[1] "A green vehicle routing problem", Erdoğan and Miller-Hooks, 2012.

Branch-cut-and-price (BCP) algorithms for VRP's

State-of-the-art exact algorithms for VRP's combine cut and column-generation.

VRPSolver framework ([2] "A generic exact solver for vehicle routing and related problems", Pessoa et al., 2020).

Modelling the Robust CVRP in VRPSolver

[3] "Branch-Cut-and-Price for the Robust Capacitated Vehicle Routing Problem with Knapsack Uncertainty", Pessoa et al., 2021.

Green logistics

[1] "A green vehicle routing problem", Erdoğan and Miller-Hooks, 2012.

Branch-cut-and-price (BCP) algorithms for VRP's

VRPSolver framework ([2] "A generic exact solver for vehicle routing and related problems", Pessoa et al., 2020).

Modelling the Robust CVRP in VRPSolver

[3] "Branch-Cut-and-Price for the Robust Capacitated Vehicle Routing Problem with Knapsack Uncertainty", Pessoa et al., 2021.

Our goal: adapt the technique of [3] to the G-VRP^[1] and then solve the problem using VRPSolver^[2].

A route is a sequence of customers and stations $R = (0, N_1, f_1, \dots, N_\ell, 0)$ with total demand at most Q.

A route is a sequence of customers and stations $R = (0, N_1, f_1, \dots, N_\ell, 0)$ with total demand at most Q.

We seek k routes R_1, \ldots, R_k such that

(i) for every pair $i, j \in [k]$ with $i \neq j$, we have that $V(R_i) \cap V(R_j) \cap N = \emptyset$ (i.e., no customer is visited more than once); and

A route is a sequence of customers and stations $R = (0, N_1, f_1, \dots, N_\ell, 0)$ with total demand at most Q.

We seek k routes R_1, \ldots, R_k such that

(i) for every pair $i, j \in [k]$ with $i \neq j$, we have that $V(R_i) \cap V(R_j) \cap N = \emptyset$ (i.e., no customer is visited more than once); and

(ii) for each $i \in [k]$, R_i is energy robust feasible, i.e., for each $N_q = (v_1, \dots, v_p) \in R_i$: $t(A(N_q)) \leq B$, for all $t \in T$

A route is a sequence of customers and stations $R = (0, N_1, f_1, ..., N_\ell, 0)$ with total demand at most Q.

We seek k routes R_1, \ldots, R_k such that

(i) for every pair $i, j \in [k]$ with $i \neq j$, we have that $V(R_i) \cap V(R_j) \cap N = \emptyset$ (i.e., no customer is visited more than once); and

(ii) for each $i \in [k]$, R_i is energy robust feasible, i.e., for each $N_q = (v_1, \ldots, v_p) \in \overline{R_i: t(A(N_q))} \leq B$, for all $t \in \mathcal{T}$.

Let $\Xi = \{\xi \in [0,1]^n : \sum_{a \in A} \xi_a \leq \Delta\}$, we use

 $\mathcal{T} \coloneqq \{ \overline{t} + (\widetilde{t})^\top \xi : \xi \in \Xi \}.$

Set-Partitioning Formulation

Let \mathcal{R} be the set of feasible routes. Let λ_R be a decision variable of route $R \in \mathcal{R}$. We use the following set partitioning formulation.

(RO) min
$$\sum_{R \in \mathcal{R}} c(R)\lambda_R$$
 (1)
s.t. $\sum_{R \in \mathcal{R}} \text{COUNT}(v, R)\lambda_R = 1, \quad \forall v \in N,$ (2)
 $\sum_{R \in \mathcal{R}} \lambda_R = k,$ (3)
 λ binary. (4)

Column Generation and Pricing Subproblem

Energy robust feasibility constraint

Fix $R = (0, N_1, f_1, \dots, N_\ell, 0) \in \mathcal{R}$ and let $N_i \in R$. Let $z \in \{0, 1\}^A$ be s.t. $z_a = 1$ iff $a \in A(N_i)$. (z is fixed, so it is not a variable!)

$$\max_{t\in\mathcal{T}}\left\{\sum_{a\in A}t_az_a\right\} \le B \tag{5}$$

Constraint (5) seems hard to handle.

Energy robust feasibility constraint

Fix $R = (0, N_1, f_1, \dots, N_\ell, 0) \in \mathcal{R}$ and let $N_i \in R$. Let $z \in \{0, 1\}^A$ be s.t. $z_a = 1$ iff $a \in A(N_i)$. (z is fixed, so it is not a variable!)

$$\max_{t\in\mathcal{T}}\left\{\sum_{a\in A}t_{a}z_{a}\right\}\leq B\tag{5}$$

Constraint (5) seems **hard** to handle. We will use the technique of (Pessoa et al., 2021)^[3] to rewrite (5) as

$$\exists \theta \in \Theta : \sum_{a \in a} t_a^{\theta} z_a \le B^{\theta}.$$
 (6)

Constraint (6) is **easier** to handle and we can model it inside VRPSolver. For each N_i , we need to choose $\theta \in \Theta$ such that $t^{\theta}(N_i) \leq B^{\theta}$.

VRP Solver

NAME : A-v8-car4
TYPE : RO-GVRP
DIMENSION : 8
EDGE_WEIGHT_TYPE : EUC_
ENERGY_CAPACITY : 10
WEIGHT_CAPACITY: 2
NODE_COORD_SECTION
164
233
3 3 8
488
583
615
766
8 10 4
PRICE_SECTION
62
7 3
8 1
DEMAND_SECTION

2D

Solution: 1->2->6(charge 5)->3->1 1->5->8(charge 5)->4->1

Any Questions?