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Background

The National Supported Work Demonstration (NSW) job-training
program was designed to help disadvantaged workers lacking basic job
skills move into the labor market by giving them work experience and
counseling in a sheltered environment in the mid-1970s.

Lalonde (1986) is interested in evaluating the effects of the NSW program
using econometric methods [Lalonde, 1986].
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Project purpose

Research question:
Whether or not joining the in the NSW Job Training Program helps with
real earnings in 1978 with addressing confounding issue

In this project, we aim to do causal analysis and evaluate the causal effect
of NSW program.
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T

Z Y

Notations

T-treatment: whether or not a person joined NSW Job Training Program

Y-outcome: earnings in 1978

Z-confounders: age, education, race, etc.
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Model settings

Response model:

Y = α0 + α1T + α2Z1 + ...+ α9Z8 + E. (1)

E ∼ N(0, σ2
Y )

Propensity score model:

log

(
π

1− π

)
= β0 + β1Z1 + β2Z2 + ...+ β8Z8 (2)

with π = P (T = 1 | Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8)
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Propensity score method [Rosenbaum and Rubin, 1983]

Definition
The propensity score π(Z) is defined as the conditional probability of
receiving the treatment given the observed covariates:

π(Z) = P (T = 1 | Z)

where:
T is a binary indicator of treatment assignment (1 if the unit receives the
treatment, 0 otherwise).
Z represents the observed covariates.
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Propensity score matching

Estimate Propensity Scores
logistic regression:

log

(
π̂

1− π̂

)
= β̂0 + β̂1Z1 + β̂2Z2 + ...+ β̂8Z8

Matching
1:1 nearest neighbor (NN) matching [Rosenbaum and Rubin, 1983]:

▶ One by one, each treated unit is paired with an available control unit that has
the closest propensity score to it.

▶ Any remaining control units are left unmatched and excluded from further
analysis.

Full matching [Hansen, 2004, Stuart and Green, 2008]:
▶ Match every treated unit to at least one control
▶ Match every control to at least one treated unit
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Propensity score matching

Check Balance

SMD =
X̄T − X̄C√

S2
T
+S2

C
2

where S2
T , S2

C are the sample variance for the treated and control group.
Use summary(match, un = FALSE) in R to assess covariate balance
post-matching, ensuring mean differences are near zero and standardized
mean differences (SMD) are less than 0.1 for good balance.

Estimate Treatment Effect
Average Treatment Effect (ATE):

▶ We can run a regression of the outcome on the treatment and covariates in the
matched sample (i.e., including the matching weights)

▶ We estimate the treatment effect using g-computation as implemented in
marginaleffects::comparisons()
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Dataset: nsw mixtape

Data from the National Supported Work Demonstration (NSW) job
training program, where those treated were guaranteed a job for 9-18
months.

A data frame with 445 rows and 11 variables.

Confounders (Every binary variables)
age Age in years
educ Years of education
black Race: Black
hisp Ethnicity: Hispanic
marr Married
nodegree Has no degree
re74 Real earnings in 1974
re75 Real earnings in 1975

Treatment: treat In the National Supported Work Demonstration Job
Training Program

Outcome: Real earnings in 1978
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Term Contrast Estimate Std. Err z Pr(> |z|) S 2.5% 97.5%
treat µ1 − µ0 1977 704 2.81 0.00501 7.6 596 3357

Table: Estimate Table
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Analyze

Propensity Score Matching: We used full matching on the propensity
score estimated via probit regression to achieve adequate balance, with all
standardized mean differences for covariates below 0.1.

Balance Achievement: Full matching utilized all treated and control
units, ensuring no units were discarded, and achieving standardized mean
differences for squares and two-way interactions below 0.15.

Treatment Effect: The estimated average treatment effect on 1978
earnings was $1977 (SE = 704, p = 0.00501), indicating a significant
positive impact of the treatment on earnings.
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Conclusion

Method: Propensity Score Matching (PSM)

The analysis suggests that while the job training program might have had
a positive effect on earnings, the evidence is strong enough to be
statistically significant at the 0.05 level. The confidence interval also
confirms the job training program helps on earnings. Further research or
additional data might be needed to draw more definitive conclusions.

Limitations & Future Work:
Reliance on observed covariates; potential unobserved confounders
Advanced causal methods (e.g., instrumental variables,
difference-in-differences)
Long-term impact analysis
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