Shu Cong s8cong@uwaterloo.ca

Dept. Mathematics University of Waterloo

Does National Supported Work(NSW) Job Training Program Works?

Joint work with mentor Xiaoya Wang

July, 2024

Outline

Introduction

- Background
- Project purpose

2 Model settings

- Notations
- Model settings

3 Methodology

- Propensity score method
- Propensity score matching

4 Data Application

- Dataset
- Love plot
- Table
- Analyze

Background

- The National Supported Work Demonstration (NSW) job-training program was designed to help disadvantaged workers lacking basic job skills move into the labor market by giving them work experience and counseling in a sheltered environment in the mid-1970s.
- Lalonde (1986) is interested in evaluating the effects of the NSW program using econometric methods [Lalonde, 1986].

Project purpose

Research question:

- Whether or not joining the in the NSW Job Training Program helps with real earnings in 1978 with addressing confounding issue
- In this project, we aim to do causal analysis and evaluate the causal effect of NSW program.

Notations

T-treatment: whether or not a person joined NSW Job Training Program

 $\rightarrow Y$

- Y-outcome: earnings in 1978
- Z-confounders: age, education, race, etc.

Z

Introduction	Model settings	Methodology	Data Application	Conclusion	References

Model settings

Response model:

$$Y = \alpha_0 + \alpha_1 T + \alpha_2 Z_1 + \dots + \alpha_9 Z_8 + E.$$
 (1)

 $E \sim N(0, \sigma_Y^2)$

Propensity score model:

$$\log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 Z_1 + \beta_2 Z_2 + \dots + \beta_8 Z_8$$
 (2)

with $\pi = P(T = 1 \mid Z_1, Z_2, Z_3, Z_4, Z_5, Z_6, Z_7, Z_8)$

Introduction	Model settings	Methodology	Data Application	Conclusion	References

Propensity score method [Rosenbaum and Rubin, 1983]

Definition

The propensity score $\pi(Z)$ is defined as the conditional probability of receiving the treatment given the observed covariates:

$$\pi(Z) = P(T = 1 \mid Z)$$

where:

- T is a binary indicator of treatment assignment (1 if the unit receives the treatment, 0 otherwise).
- Z represents the observed covariates.

Introduction	Model settings	Methodology	Data Application	Conclusion	References

Propensity score matching

- Estimate Propensity Scores
 - Iogistic regression:

$$\log\left(\frac{\hat{\pi}}{1-\hat{\pi}}\right) = \hat{\beta}_0 + \hat{\beta}_1 Z_1 + \hat{\beta}_2 Z_2 + \dots + \hat{\beta}_8 Z_8$$

Matching

- 1:1 nearest neighbor (NN) matching [Rosenbaum and Rubin, 1983]:
 - One by one, each treated unit is paired with an available control unit that has the closest propensity score to it.
 - Any remaining control units are left unmatched and excluded from further analysis.
- Full matching [Hansen, 2004, Stuart and Green, 2008]:
 - Match every treated unit to at least one control
 - Match every control to at least one treated unit

Propensity score matching

- Check Balance
 - 2

$$\mathsf{SMD} = \frac{\bar{X}_T - \bar{X}_C}{\sqrt{\frac{S_T^2 + S_C^2}{2}}}$$

where S_T^2, S_C^2 are the sample variance for the treated and control group.

Use summary(match, un = FALSE) in R to assess covariate balance post-matching, ensuring mean differences are near zero and standardized mean differences (SMD) are less than 0.1 for good balance.

Estimate Treatment Effect

- Average Treatment Effect (ATE):
 - We can run a regression of the outcome on the treatment and covariates in the matched sample (i.e., including the matching weights)
 - We estimate the treatment effect using g-computation as implemented in marginaleffects::comparisons()

ntroduction	Model settings	Methodology	Data Application	Conclusion	Reference

Dataset: nsw_mixtape

- Data from the National Supported Work Demonstration (NSW) job training program, where those treated were guaranteed a job for 9-18 months.
- A data frame with 445 rows and 11 variables.
- Confounders (Every binary variables)
 - age Age in years
 - educ Years of education
 - black Race: Black
 - hisp Ethnicity: Hispanic
 - marr Married
 - nodegree Has no degree
 - re74 Real earnings in 1974
 - re75 Real earnings in 1975
- Treatment: treat In the National Supported Work Demonstration Job Training Program
- Dutcome: Real earnings in 1978

Term	Contrast	Estimate	Std. Err	z	$\Pr(> z)$	S	2.5%	97.5%
treat	$\mu_1 - \mu_0$	1977	704	2.81	0.00501	7.6	596	3357

Table: Estimate Table

Introduction	Model settings	Methodology	Data Application	Conclusion	References
Ana	llyze				
2	Propensity Score score estimated via standardized mean	Matching: We u probit regression differences for co	sed full matching to achieve adequ ovariates below 0.1	on the propensit ate balance, wit	y h all
2	Balance Achieven units, ensuring no o differences for squa	nent: Full matchi units were discard res and two-way	ing utilized all trea ded, and achieving interactions below	ted and control standardized m 0.15.	ean
- ×	Treatment Effect:	The estimated a	average treatment	effect on 1978	

earnings was \$1977 (SE = 704, p = 0.00501), indicating a significant positive impact of the treatment on earnings.

Introduction	Model settings	Methodology	Data Application	Conclusion	References

Conclusion

- Method: Propensity Score Matching (PSM)
- The analysis suggests that while the job training program might have had a positive effect on earnings, the evidence is strong enough to be statistically significant at the 0.05 level. The confidence interval also confirms the job training program helps on earnings. Further research or additional data might be needed to draw more definitive conclusions.
- Limitations & Future Work:
 - > Reliance on observed covariates; potential unobserved confounders
 - Advanced causal methods (e.g., instrumental variables, difference-in-differences)
 - Long-term impact analysis

	odel settings	Methodology	Data Application	Conclusion	References
References					

- Ben B Hansen. Full matching in an observational study of coaching for the sat. *Journal of the American Statistical Association*, 99(467):609–618, 2004.
- Robert J. Lalonde. Evaluating the econometric evaluations of training programs. *American Economic Review*, 76:604–620, 1986.
- Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational studies for causal effects. *Biometrika*, 70(1):41–55, 1983.
- Elizabeth A Stuart and Kerry M Green. Using full matching to estimate causal effects in nonexperimental studies: examining the relationship between adolescent marijuana use and adult outcomes. *Developmental psychology*, 44 (2):395, 2008.