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If you were a plant
that grew in spirals...

Then you have limited space to plant your seeds/grow your leaves.

How much would you turn between each consecutive seed to
maximize the number of seeds you grow?




A Model for Growth of a Sunflower (1/n, n©)

e Anaccepted model for sunflower growth is as e Note that the modelis very inefficient when O is a
follows: the n-th seed is placed at angle nG and rational number with a small denominator.
distance \/ n from the center, for some fixed 6. e Spirals become apparent when 0 is “badly

e |[nthese examples, we observe the changes that approximable”
occur when 0O takes on different values. e We wish for O to be the "farthest" possible from a

rational number. But what does that mean?

Rotation Each Time: 0.25 Go Rotation Each Time: 0.1 Go Rotation Each Time: 0.24 Go Rotation Each Time: 0.31415 Go Rotation Each Time: 1.618 Go

Stop

Stop Stop

Rotation: 1/4 Rotation: 1/10 Rotation: 0.24 Rotation: m/10 Rotation: 1.618 = ¢



Diophantine Approximations

What is a “good” approximation?

o — 4 is negligible for a relatively small denominator q.

q

We say a rational g is a "good” approximation of « if




Diophantine Approximations

What is a “good” approximation?

is negligible for a relatively small denominator q.
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We say a rational g is a "good” approximation of « if

Example: v2

The first few approximations p, q for ‘\/5 - %‘:

V2 — 3| =0.4142135
V2 — 3| =0.0857864
V2 — | =0.0142135
V2 — 11| = 0.0024531




Diophantine Approximations

What is a “good” approximation?

We say a rational P is a "good” approximation of « if |a — P

is negligible for a relatively small denominator q.
q

Example: V2 Dirichlet's approximation theorem
The first few approximations p, g for ‘ V2 — ;t_;‘: For all a € QQ, there exist oo many pairs of integers p, q
for which |a — I—J‘ < iz
V2 — 1| =0.4142135 <1 al g
1
V2 — 3| =0.0857864 <3
1
V2 — 1| =0.0142135 <5
17| _ 1
V2 — 11| = 0.0024531 <3



Approximations for /2

A few observations...
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Observation 1: Recurrence relation
7 3 1
5 =212+ o
17 7 3
iz =203 * |2



Approximations for /2

A few observations...
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These observations will be formalized as properties of continued fractions.
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Continued Fractions
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Defining a Continued Fraction

Finite Infinite
1 1
@=ao+ 1 o= ag
EE]_—I— | ].
|
az + 1 41 _
o4 — az +
ay,
ﬂ:[ﬂ'[];ﬂlﬁﬂ'zv"'?ﬂ'ﬂ] (k= [ﬂ[]ﬂLﬂEa]

We will only focus on ag € Z and a; e M for i > 1

Facts:
1. Finite continued fraction <= « is rational
2. To every real number e, there corresponds a unique continued fraction with

value equal to o



Convergents & Properties

The kth-order convergent of a:

Pk | 1
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Then, — = T We also consider the —1 order convergent:
do

p-1=1,9g-1=0, po=ap, gqo =1



Convergents & Properties

The kth-order convergent of a:

Pk | 1
— = [ﬂﬂgﬂlaﬂﬂz ---ﬁfﬂk] = ap
qk | 1
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1
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Then, — = T We also consider the —1 order convergent:
do

p-1=1,9g-1=0, po=ap, gqo =1

Property 1

For arbitrary k£ > 1,

Pk = QpPr—1 + Pk—2,

qk = AEpqr—1 + gr—2.

Property 2
For all k£ > 0,
det (Fk Q’k—l]) _ (_Uk
Pk Pk—1
Property 3

For arbitrary k = (),
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Representing the Golden Ratio

The quadratic equation...

2 —r—1=0



Representing the Golden Ratio

The quadratic equation...

2 —x—1=0
The golden ratio is the positive root




Representing the Golden Ratio

The quadratic equation...

2 —r—1=0
The golden ratio is the positive root

\ Rearranging the equation...
1++5 l/

Y= 1
2 r=1+4—

/

Continued fraction of the golden ratio:
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A Relation to Fibonacci

Definition of the Fibonacci sequence:

Let {F), }nez., be the Fibonacci sequence, that is:

F():Fl:l}

Fn+1:Fn+Fn—l

(n € Z>o)

Convergents of the Golden ratio:
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p2  apr+po pi+po 3 F3
G2 aq1+qo Q1+Q‘n_§_E
p3 azp2t+p1 patpr 5 Iy
g3 a3 +¢ @+a 3 Fj
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(n Qn—1 + qn—2 Fon_1+ Frh—2 F,

Fibonacci Numbers!



Is there a C > 0, such that

k=
ol O

has infinitely many solutions b ?

q

1. « is irrational, can always choose C = E

. ap + b .
2. «visin the form = lag;a1,...,an,1,...,1l with a,b,c,d € Z, ad—bc = %1
co +d

1
NG

1
and ¢ is the golden ratio, then C cannot be less than —. Otherwise, C =

V5

works.
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Brussels Sprouts

} e Add points by:

vertical distance h, place the second point
\ o Repeating ...
\\ e The apparent spirals within the points form as
&) each point connects to its two closest neighbours.
A
o | | B N It
e |f point nis the closest to O, then there will be n apparent spirals. T NG ""-15
o same distance from O ton, nto 2n, ... A \13

L \ e A cylinder of circumference 1

o Placing the first point at the bottom.
o Rotating by 360/¢ degrees and moving up a

o same distance from O to n,1to n+l, ..., n-1to 2n-1 t\L Lj

e The number of apparent spirals is a denominator in a convergent
of the rotation (360/y), which will be a Fibonacci number.

A model with 8 spirals



Sunflower

e The number of spirals is also always a Fibonacci number.
e Farther from the center, the numbers of apparent spirals increase and
they alternate directions.

Red: 34 spirals Blue: 55 spirals



Golden ratio and phyllotaxis:
e a clear mathematical link
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The Lattice Model

Buds on a cylindrical stem A lattice in C



The Lattice Model

Draw a parallelogram around one of these buds...

—
Unfold

Buds on a cylindrical stem A lattice in C



The Lattice Model

Draw a parallelogram around one of these buds...

We obtain the fundamental parallelogram:

,,_/

Unfold

Buds on a cylindrical stem A lattice in C

Determining the maximum size of a bud on the
cylindrical stem is equivalent to finding the
largest disk that can be inscribed within the

fundamental parallelogram.



The Lattice Model

Disk inscribed
Buds on a cylindrical stem Alattice in C in the fundamental parallelogram

Area of inscribed disk

Area of parallelogram

A function on the lattice: f* =

flw)=f(Z+2w), w=0+iheH



The Growth Capacity Function

Area of inscribed disk

A function on the lattice: f* = A ; el
rea of parallelogram

flw): = (Z+2w), w=0+iheH

H={z¢€C:Im(z) > 0}
alternatively,

H={x+iyecC:y >0}



The Growth Capacity Function

Area of inscribed disk

A function on the lattice: f* = A ; ol
rea of parallelogram

flw):=f(Z+2w), w=0+iheH

f is a modular form H ={z € C:Im(z) > 0}

f is invariant under the actions of Si2(Z): alternatively,

H={zx+iyecC:y >0}
f(Aw) = f(w) for some A € SLy(Z)



The Growth Capacity Function

Area of inscribed disk

A function on the lattice: f* = A ; el
rea of parallelogram

flw): = (Z+2w), w=0+iheH

f is a modular form

f is invariant under the actions of Sl3(Z): SLy(Z) is the special linear group on Z°
a b

f(Aw) = f(w) for some A € SLy(Z) SLalZ) = { L d] 50,6658 Go—0e= 1}

The action of a matrix in SLy(Z) on w € H:



Explicit Formula

Tiling of hyperbolic plane

The fundamental region, D, has the property:

For every w € H, there exist wy € Dy
and A € Sly(Z) such that

szwg

In other words, it is always possible to be

brought back to the fundamental region Dj.



Explicit Formula

The fundamental region, D, has the property:

For every w € H, there exist wy € Dy
and A € Sly(Z) such that

szwg

In other words, it is always possible to be

brought back to the fundamental region Dj.

“ \ / 4‘ (f easy to compute on Dy) A (f modular) = f is easily computable on all of H

=
=
%] (2
(4[]
(]
%/ [%]
=1

w=0+ihe B Z] Dy => f(9+¢h):“((q9_p)2+q2h), E ";] € Sly(Z)

Tiling of hyperbolic plane 4

a transform of D,

Key takeaway: for f to be large, you need (qf — p) to be large.



Finale: The Golden Ratio

We obtain that

C C
g0 — p| > E = f(0+1ih) > %,forsomeh>0




Finale: The Golden Ratio

We obtain that

C C
g0 — p| > E = f(0+1ih) > %,forsomeh>0

Using our knowledge of convergents, we deduce the following result:

The limit inferior as h — 0 of f(6 + ih) is given by:

£ aptb —
T :
< e otherwise

ll}ln_}(IJlf f(@+1ih) = {




Finale: The Golden Ratio - A Visualization

T
T~ 0.702481 =~ 70.25%
25 0

of the area of the parallelogram is the inscribed disk.




Finale: The Golden Ratio - A Visualization

T
T~ 0.702481 =~ T70.25%
25 ’

of the area of the parallelogram is the inscribed disk.

Recall that the inscribed disk measures how capacious the growth scheme is.




Finale: The Golden Ratio - A Visualization

T
T~ 0.702481 =~ T70.25%
25 ’

of the area of the parallelogram is the inscribed disk.

Recall that the inscribed disk measures how capacious the growth scheme is.

Our result corresponds to a growth scheme where the buds cover ~ 70% of the surface area of the stem.




Finale: The Golden Ratio - A Visualization

T
— ~0.702481 ~ 70.25%
24/5 0

of the area of the parallelogram is the inscribed disk.
Recall that the inscribed disk measures how capacious the growth scheme is.

Our result corresponds to a growth scheme where the buds cover ~ 70% of the surface area of the stem.

When LU

ad — bc = 1, we have the largest potential for growth.

cp+d’




Thank You for Listening

Jackie Liu Lydia He

j38bliu@uwaterloo.ca (32he@uwaterloo.ca



