

How to Create and Use Random Numbers

Christiane Lemieux Department of Statistics and Actuarial Science Faculty of Mathematics University of Waterloo

> WiMWiM Series April 4, 2024

Why/When Are Random Numbers Useful?

- Games (to avoid repeated patterns and make it more fun!)
- ► Polls/Surveys
 - Cannot ask WHOLE population to answer question
 - Use a SAMPLE from which we'll INFER how the whole population would have responded
 - Can only do this if sample is truly RANDOM
- Al: randomness used in exploration, training, and estimation phases of many Al algorithms

Randomness as Key Ingredient for Survey/Poll

Q: What proportion of ABC Village residents prefer dogs over cats?

× * * R * * * * * * * <u>*</u> * * * * * * * * * * * * Q >> 0

* * * * * * * * * $\hat{\mathbf{x}}$

Randomly select people in ABC Village Need a way to sample randomly

PLAN FOR TODAY

- 1. Methods that use random numbers to solve problems
- 2. How to generate random numbers on a computer
- 3. Quasi-random numbers

A mix of mathematics, statistics and computer science!

Random numbers to compute surface area

- By now you've learned how to easily compute the surface areas of regular shapes such as a square, circle, triangle, etc, as long as you have the required measurements
- What if you get an irregular shape?

What if you need to compute the volume of an irregular solid?

Random numbers to compute surface area

Idea I: Find a regular shape to put around the irregular one; randomly choose N points inside the regular shape and count how many are inside your irregular shape (call this n); estimate the surface area by

$$R \times \frac{n}{N}$$
 where $R =$ surface area of regular shape

Called the "Hit-and-Miss" Method

Hit-and-Miss: Why does it work?

Need a key ingredient: expected value of a random variable

Let X be the result when you roll a balanced die.

The **expected value** of X is the weighted average of all possible values X can take, where the weight is given by the probability that X takes this value. We write it as E(X). What is the value of E(X)?

Let Y be the maximum value you get when you roll two dice. What is the value of E(Y)?

Hit-and-Miss: Why does it work?

Random numbers to compute surface area

Idea II: Randomly choose N points on the x axis; measure the height of the shape at those points (get N measurements $h_1, h_2, ..., h_N$); estimate the surface area by a rectangle whose height is the AVERAGE height measured over the random points, given by

$$\text{base} \times \frac{1}{N}(h_1 + \ldots + h_N)$$

Called the "Monte Carlo Method"

Playing with these ideas on a computer

	N = 10	N = 100	N = 1000	N = 10000	N = 100000
Hit-and-Miss	4.66	5.48	5.77	5.79	5.77
Monte Carlo	5.65	5.69	5.59	5.73	5.77

 \dots and the true answer is \dots 5.77124

$$\int_{0}^{3} \frac{2}{9} x^{2} dx + \int_{3}^{3+\sqrt{8}} (2 - 0.25(x - 3)^{2}) dx = \frac{2}{9} \times 2 + 2\sqrt{8} - \frac{1}{12}(\sqrt{8})^{3} = 5.77124$$

Let's look at some Python code implementing these ideas.

Q: What is behind the random.uniform function in python?

How to generate numbers on a computer

How can one generate "true" randomness?

- ► Dice, balls in an urn, spinner, etc.
- But what if we need millions of them very quickly?
- ► Could use physical devices (e.g., based on principles of quantum mechanics) ⇒ not ideal (measurement errors, reproducibility, speed, ...)

Instead, we generate **pseudo-random numbers (PRNs)** using **pseudo-random number generators (PRNGs)**.

- "pseudo" because they look random but are in fact "deterministic" (not random)
- Means that eventually, the same sequence of numbers starts appearing again (periodic behavior)

Pseudo-random number generators (PRNG)

A good PRNG should

- produce random variates u₁,..., u_n (PRNs) that look random (can use theoretical and statistical tests to support this assumption)
- allow to set a seed for reproducibility
- ► have a large period
- ► be fast
- should be easy to understand and implement.

Middle-Square Method

One of the first pseudorandom number generators that was used for simulation was the "**middle square method**" by John von Neumann in 1949, which works as follows:

- 1. Start with a 4-digit positive integer Z₀ and square it to obtain an integer with up to 8 digits; if necessary, append zeros to the left to make it exactly eight digits.
- 2. Take the middle four digits of this eight-digit number as the next four-digit number, Z_1 .
- 3. Place a decimal point at the left of Z_1 to obtain the first "U(0, 1) number," U_1 .
- 4. Then let Z_2 be the middle four digits of Z_1^2 and let U_2 be Z_2 with a decimal point to the left, and so on.

$$\begin{split} & Z_0 = 2372 \Rightarrow Z_0^2 = 05626384 \Rightarrow Z_1 = 6263 \Rightarrow U_1 = 0.6263 \\ & \Rightarrow Z_1^2 = 39225169, Z_2 = 2251, U_2 = 0.2251, \ldots \end{split}$$

Practice

Starting with $Z_0 = 6543$, determine the first four numbers U_1 to U_4 output by this PRNG.

Problems with Middle-Square Method

- 1. Period is no larger than 10⁴. Why?
- 2. If the middle 4 digits are all zeroes, the generator gets stuck and output 0 forever.
- 3. If the first half of a number in the sequence is zeroes, the subsequent numbers will be decreasing to zero. (Try $Z_0 = 3001$)
- 4. Can also get stuck on certain values: (Try $Z_0 = 2500$).
- 5. Other bad choices with very short cycles: (Try $Z_0 = 0540$)

Basic Principles for Pseudorandom Number Generator (PRNG)

- PRNG usually output (pseudorandom) numbers between 0 and 1
- PRNG works by applying a transition function to a state, and then an output transformation from the state to a (pseudorandom)number between 0 and 1

- ► state is typically a whole number (or a list of whole numbers) between 0 and m 1 where m is a large whole number
- if state x_i returns to x_0 , the sequence starts repeating itself (period length of i)
- ▶ to make sure we stay in the range $\{0, 1, ..., m-1\}$ we need modular arithmetic

Tool for PRNG: Modular Arithmetic

Linear Congruential Generators

Lehmer in 1951 introduced linear congruential generators (LCGs) which are PRNGs recursively defined by

 $x_n = a x_{n-1} \mod m, \quad n \ge 0,$

with multiplier a, modulus $m \ge 0$ and seed x_0 .

- Maximum period of an LCG is m 1. Why?
- ► Maxium period is reached if a is a primitive element mod m... Means smallest positive integer r such that a^r mod m = 1 is r = m 1.
- Q: find a primitive element mod 7

LCGs

 $x_n = a x_{n-1} \mod m$,

To obtain PRNs, simplest output function is $u_n = \frac{x_n}{m} \in [0, 1)$.

Toy Example: m = 11, a = 6, $x_0 = 1 \Rightarrow x_n = 6x_{n-1} \mod 11$, What sequence u_0, u_1, u_2, \ldots do you get? What is the period?

Multiple Recursive Generator

Idea: look back more than one state, e.g., use

$$x_n = ax_{n-1} + bx_{n-2} + cx_{n-3} \mod m$$

MRG32k3a

Combined MRG from P. L'Ecuyer (Montreal) with 2 components and for which

- The parameters of this generator were found through extensive searches based on theoretical and statistical tests.
- Period of about 2¹⁹¹. This is 3138550867693340381917894711603833208051177722232017256448
- Code available online at http://simul.iro.umontreal.ca/rng/MRG32k3a.c

Quasi-Random Numbers

- ► Random samples can be irregular (clusters of points, large gaps with no points)
- Since computer is already creating "fake" numbers, could we not make them be less irregular, more uniformly distributed?
- This is the idea behind quasi-random numbers also referred to as low-discrepancy point sets or sequences

Low-discrepancy point sets

Figure: Four different point sets with n = 64: pseudorandom (top left), rectangular grid (top right), Korobov lattice (bottom left), and Sobol' (bottom right).

Low-discrepancy sequences: a first example

In one dimension, we can construct a sequence of points u_0, u_1, \ldots with a low discrepancy as follows:

- 1. Choose a base b
- 2. To define u_i :

• expand i in base b, i.e., write $i = a_0 + a_1b + a_2b^2 + a_3b^3 + ...$ e.g., for i = 5 and b = 2 write 5='101', i.e., $5 = (2^0 + 2^2)$ so $a_0 = a_2 = 1$ and all other a_1 's are 0.

• apply radical-inverse function:

$$u_i = S_b(i) := a_0 \frac{1}{b} + a_1 \frac{1}{b^2} + a_2 \frac{1}{b^3} + \dots,$$

e.g., for $i = 5$ and $b = 2$ we get $u_5 = S_2(5) = 1 \times 2^{-1} + 1 \times 2^{-3} = 5/8$
Try it: What is $S_3(5)$?

This yields the van der Corput sequence in base b, denoted S_b (goes back to 1935)

van der Corput Sequence in base 2

Practice: write out the first 10 terms of the sequence S_2 (van der Corput sequence in base 2)

van der Corput Sequences

Extending the van der Corput sequence to more than one dimension

Why? Recall for hit-and-miss we need points in two dimensions. **How do we do this?** Possible approach:

- ▶ use a different base for each dimension (Halton sequence, 1960).
- ► That is, let S_b denote the van der Corput sequence in base b, and S_b(n) be the nth term of this sequence.
- The Halton sequence in s dimensions is given by (S_{b1},..., S_{bs}) where the b_j's are pairwise co-primes.
- Typically, take b_j to be the jth prime number.

Halton sequence in three dimensions

$$\mathbf{u}_2 = (1/2, 1/3, 1/5)$$

 $\mathbf{u}_4 = (3/4, 1/9, 3/5)$

First two dimensions:

Go back to our computer program and test this

Key takeaways

- 1. Random numbers are used in numerous computing tasks for all kinds of problems
- 2. Computers rely on **pseudorandom number generators** to generate pseudo-random numbers very quickly
- 3. **Quasi-random numbers** are more uniform than pseudorandom numbers so they can often provide better approximations
- 4. Need a mix of **mathematics**, **statistics and computer science** to play with this and understand how it all works

MC: Why does it work?

- Want to show that $E(B\frac{1}{N}(h_1 + h_2 + ... + h_N)) = A$ (where B is the base)
- ► Sufficient to show that E(h₁) = A/B
- The h_i's could take any value between 0 and 2 because x can take any value between 0 and B...
- ► Approximation: x can only take, say, M = 20 values equally spaced between 0 and B, each with probability 1/M

MC: Why does it work

Approximation: x can take M values (mid-point of rectangles) with probability 1/M \Rightarrow each rectangle corresponds to one of those M cases, with base equal to $B\times 1/M$ and height is the value taken by h_1

 \Rightarrow total surface of M rectangles $\approx BE(h_1)$ total surface of M rectangles $\approx BE(h_1)$

 $\approx A$