
How to Create and Use Random Numbers

Christiane Lemieux
Department of Statistics and Actuarial Science

Faculty of Mathematics

University of Waterloo

WiMWiM Series
April 4, 2024



Why/When Are Random Numbers Useful?

▶ Games (to avoid repeated patterns and make it more fun!)
▶ Polls/Surveys

▶ Cannot ask WHOLE population to answer question
▶ Use a SAMPLE from which we’ll INFER how the whole population would have

responded
▶ Can only do this if sample is truly RANDOM

▶ AI: randomness used in exploration, training, and estimation phases of many AI
algorithms



Randomness as Key Ingredient for Survey/Poll

Q: What proportion of ABC Village residents prefer dogs over cats?

Take a poll at the dog park
Biased sample

Randomly select people in ABC Village
Need a way to sample randomly



PLAN FOR TODAY

1. Methods that use random numbers to solve problems

2. How to generate random numbers on a computer

3. Quasi-random numbers

A mix of mathematics, statistics and computer science!



Random numbers to compute surface area
▶ By now you’ve learned how to easily compute the surface areas of regular shapes

such as a square, circle, triangle, etc, as long as you have the required
measurements

▶ What if you get an irregular shape?

0 2 4 5.83
0

1

2

▶ What if you need to compute the volume of an irregular solid?



Random numbers to compute surface area

Idea I: Find a regular shape to put around the irregular one; randomly choose N points
inside the regular shape and count how many are inside your irregular shape (call this n);
estimate the surface area by

R× n

N
where R = surface area of regular shape

0 2 4 5.83
0

1

2

Called the "Hit-and-Miss" Method



Hit-and-Miss: Why does it work?

Need a key ingredient: expected value of a random variable

Let X be the result when you roll a balanced die.
The expected value of X is the weighted average of all possible values X can take,
where the weight is given by the probability that X takes this value. We write it as E(X).
What is the value of E(X)?
Let Y be the maximum value you get when you roll two dice. What is the value of E(Y)?



Hit-and-Miss: Why does it work?



Random numbers to compute surface area

Idea II: Randomly choose N points on the x axis; measure the height of the shape at
those points (get N measurements h1,h2, . . . ,hN); estimate the surface area by a
rectangle whose height is the AVERAGE height measured over the random points, given
by

base × 1

N
(h1 + . . .+ hN)

0 2 4 5.83
0

1

2

Called the "Monte Carlo Method"



Playing with these ideas on a computer

N = 10 N = 100 N = 1000 N = 10000 N = 100000

Hit-and-Miss 4.66 5.48 5.77 5.79 5.77

Monte Carlo 5.65 5.69 5.59 5.73 5.77

...and the true answer is . . . 5.77124∫3
0

2

9
x2dx+

∫3+√
8

3
(2− 0.25(x− 3)2)dx =

2

9
× 2+ 2

√
8−

1

12
(
√
8)3 = 5.77124

Let’s look at some Python code implementing these ideas.

Q: What is behind the random.uniform function in python?



How to generate numbers on a computer

How can one generate “true” randomness?
▶ Dice, balls in an urn, spinner, etc.
▶ But what if we need millions of them very quickly?
▶ Could use physical devices (e.g., based on principles of quantum mechanics)

⇒ not ideal (measurement errors, reproducibility, speed, . . . )

Instead, we generate pseudo-random numbers (PRNs) using pseudo-random
number generators (PRNGs).
▶ “pseudo” because they look random but are in fact “deterministic” (not random)
▶ Means that eventually, the same sequence of numbers starts appearing again

(periodic behavior)



Pseudo-random number generators (PRNG)

A good PRNG should
▶ produce random variates u1, . . . ,un (PRNs) that look random (can use theoretical

and statistical tests to support this assumption)
▶ allow to set a seed for reproducibility
▶ have a large period
▶ be fast
▶ should be easy to understand and implement.



Middle-Square Method

One of the first pseudorandom number generators that was used for simulation was the
“middle square method” by John von Neumann in 1949, which works as follows:

1. Start with a 4-digit positive integer Z0 and square it to obtain an integer with up to 8
digits; if necessary, append zeros to the left to make it exactly eight digits.

2. Take the middle four digits of this eight-digit number as the next four-digit number,
Z1.

3. Place a decimal point at the left of Z1 to obtain the first “U(0, 1) number,” U1.

4. Then let Z2 be the middle four digits of Z2
1 and let U2 be Z2 with a decimal point to

the left, and so on.

Z0 = 2372 ⇒ Z2
0 = 05626384 ⇒ Z1 = 6263 ⇒ U1 = 0.6263

⇒ Z2
1 = 39225169,Z2 = 2251,U2 = 0.2251, . . .



Practice

Starting with Z0 = 6543, determine the first four numbers U1 to U4 output by this PRNG.



Problems with Middle-Square Method

1. Period is no larger than 104. Why?

2. If the middle 4 digits are all zeroes, the generator gets stuck and output 0 forever.

3. If the first half of a number in the sequence is zeroes, the subsequent numbers will
be decreasing to zero. (Try Z0 = 3001)

4. Can also get stuck on certain values: (Try Z0 = 2500).

5. Other bad choices with very short cycles: (Try Z0 = 0540)



Basic Principles for Pseudorandom Number Generator (PRNG)
▶ PRNG usually output (pseudorandom) numbers between 0 and 1
▶ PRNG works by applying a transition function to a state, and then an output

transformation from the state to a (pseudorandom)number between 0 and 1

state xn state xn+1
transition

un un+1

. . .. . .x0 (seed)

output (in [0,1])

▶ state is typically a whole number (or a list of whole numbers) between 0 and m− 1
where m is a large whole number

▶ if state xi returns to x0, the sequence starts repeating itself (period length of i)
▶ to make sure we stay in the range {0, 1, . . . ,m− 1} we need modular arithmetic



Tool for PRNG: Modular Arithmetic



Linear Congruential Generators
▶ Lehmer in 1951 introduced linear congruential generators (LCGs) which are

PRNGs recursively defined by

xn = axn−1 mod m, n ⩾ 0,

with multiplier a, modulus m ⩾ 0 and seed x0.
▶ Maximum period of an LCG is m− 1. Why?
▶ Maxium period is reached if a is a primitive element mod m... Means smallest

positive integer r such that ar mod m = 1 is r = m− 1.
▶ Q: find a primitive element mod 7



LCGs

xn = axn−1 mod m,

To obtain PRNs, simplest output function is un = xn

m ∈ [0, 1).

Toy Example: m = 11, a = 6, x0 = 1 ⇒ xn = 6xn−1 mod 11,
What sequence u0,u1,u2, . . . do you get? What is the period?



Multiple Recursive Generator

Idea: look back more than one state, e.g., use

xn = axn−1 + bxn−2 + cxn−3 mod m



MRG32k3a

Combined MRG from P. L’Ecuyer (Montreal) with 2 components and for which

x1,n = (1403580x1,n−2 − 810728x1,n−3) mod (232 − 209),

x2,n = (527612x2,n−1 − 1370589x2,n−3) mod (232 − 22853),

zn = (x1,n − x2,n) mod (232 − 209),

un = zn/(2
32 − 209).

▶ The parameters of this generator were found through extensive searches based on
theoretical and statistical tests.

▶ Period of about 2191. This is
3138550867693340381917894711603833208051177722232017256448

▶ Code available online at http://simul.iro.umontreal.ca/rng/MRG32k3a.c

http://simul.iro.umontreal.ca/rng/MRG32k3a.c


Quasi-Random Numbers
▶ Random samples can be irregular (clusters of points, large gaps with no points)
▶ Since computer is already creating “fake” numbers, could we not make them be less

irregular, more uniformly distributed?
▶ This is the idea behind quasi-random numbers also referred to as low-discrepancy

point sets or sequences



Low-discrepancy point sets

.

.

.
.

.

.
.

.

.
... ..

.
.

.

.

.

.
.

.

.
.

.

.

. .

. .

..
.

.

..
.

.
.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.
.

..

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

Figure: Four different point sets with n = 64: pseudorandom (top left), rectangular grid (top right),
Korobov lattice (bottom left), and Sobol’ (bottom right).



Low-discrepancy sequences: a first example

In one dimension, we can construct a sequence of points u0,u1, . . . with a low
discrepancy as follows:

1. Choose a base b

2. To define ui:
▶ expand i in base b, i.e., write i = a0 + a1b+ a2b

2 + a3b
3 + . . .:

e.g., for i = 5 and b = 2 write 5=’101’, i.e., 5 = (20 + 22) so
a0 = a2 = 1 and all other al’s are 0.

▶ apply radical-inverse function:
ui = Sb(i) := a0

1
b
+ a1

1
b2 + a2

1
b3 + . . .,

e.g., for i = 5 and b = 2 we get u5 = S2(5) = 1×2−1+1×2−3 = 5/8

Try it: What is S3(5)?

This yields the van der Corput sequence in base b, denoted Sb (goes back to 1935)



van der Corput Sequence in base 2

Practice: write out the first 10 terms of the sequence S2 (van der Corput sequence in
base 2)



van der Corput Sequences

base 2
0

1
2

1
4

3
4

1
8

5
8

3
8

7
8

1
16

9
16

base 3
0

1
3

2
3

1
9

4
9

7
9

2
9

5
9

1
27



Extending the van der Corput sequence to more than one dimension

Why? Recall for hit-and-miss we need points in two dimensions.
How do we do this? Possible approach:
▶ use a different base for each dimension (Halton sequence, 1960).
▶ That is, let Sb denote the van der Corput sequence in base b, and Sb(n) be the nth

term of this sequence.
▶ The Halton sequence in s dimensions is given by (Sb1 , . . . ,Sbs

) where the bj’s are
pairwise co-primes.

▶ Typically, take bj to be the jth prime number.



Halton sequence in three dimensions

u1 = (0, 0, 0) u2 = (1/2, 1/3, 1/5)

u3 = (1/4, 2/3, 2/5) u4 = (3/4, 1/9, 3/5)

u5 = (1/8, 4/9, 4/5)

First two dimensions:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



Go back to our computer program and test this



Key takeaways

1. Random numbers are used in numerous computing tasks for all kinds of problems

2. Computers rely on pseudorandom number generators to generate
pseudo-random numbers very quickly

3. Quasi-random numbers are more uniform than pseudorandom numbers so they
can often provide better approximations

4. Need a mix of mathematics, statistics and computer science to play with this and
understand how it all works



MC: Why does it work?
▶ Want to show that E(B 1

N(h1 + h2 + . . .+ hN)) = A (where B is the base)
▶ Sufficient to show that E(h1) = A/B

▶ The hi’s could take any value between 0 and 2 because x can take any value
between 0 and B...

▶ Approximation: x can only take, say, M = 20 values equally spaced between 0 and
B, each with probability 1/M

0 2 4 5.83
0

1

2



MC: Why does it work

0 2 4 5.83
0

1

2

Approximation: x can take M values (mid-point of rectangles) with probability 1/M
⇒ each rectangle corresponds to one of those M cases, with base equal to B× 1/M
and height is the value taken by h1

⇒ total surface of M rectangles ≈ BE(h1)total surface of M rectangles︸ ︷︷ ︸
≈A

≈ BE(h1)


