How to Create and Use Random Numbers

Christiane Lemieux
Department of Statistics and Actuarial Science
Faculty of Mathematics
University of Waterloo

WiMWiM Series
April 4, 2024

Why/When Are Random Numbers Useful?

- Games (to avoid repeated patterns and make it more fun!)
- Polls/Surveys
- Cannot ask WHOLE population to answer question
- Use a SAMPLE from which we'll INFER how the whole population would have responded
- Can only do this if sample is truly RANDOM
- AI: randomness used in exploration, training, and estimation phases of many AI algorithms

Randomness as Key Ingredient for Survey/Poll
Q: What proportion of ABC Village residents prefer dogs over cats?

PLAN FOR TODAY

1. Methods that use random numbers to solve problems
2. How to generate random numbers on a computer
3. Quasi-random numbers

A mix of mathematics, statistics and computer science!

Random numbers to compute surface area

- By now you've learned how to easily compute the surface areas of regular shapes such as a square, circle, triangle, etc, as long as you have the required measurements
-What if you get an irregular shape?

- What if you need to compute the volume of an irregular solid?

Random numbers to compute surface area

Idea I: Find a regular shape to put around the irregular one; randomly choose N points inside the regular shape and count how many are inside your irregular shape (call this n); estimate the surface area by

$$
R \times \frac{n}{N} \text { where } R=\text { surface area of regular shape }
$$

Called the "Hit-and-Miss" Method

Hit-and-Miss: Why does it work?

Need a key ingredient: expected value of a random variable

Let X be the result when you roll a balanced die. The expected value of X is the weighted average of all possible values X can take, where the weight is given by the probability that X takes this value. We write it as $E(X)$. What is the value of $E(X)$?
Let Y be the maximum value you get when you roll two dice. What is the value of $E(Y)$?

Hit-and-Miss: Why does it work?

Random numbers to compute surface area

Idea II: Randomly choose N points on the x axis; measure the height of the shape at those points (get N measurements $h_{1}, h_{2}, \ldots, h_{N}$); estimate the surface area by a rectangle whose height is the AVERAGE height measured over the random points, given by

$$
\text { base } \times \frac{1}{N}\left(h_{1}+\ldots+h_{N}\right)
$$

Called the "Monte Carlo Method"

Playing with these ideas on a computer

	$\mathrm{N}=10$	$\mathrm{~N}=100$	$\mathrm{~N}=1000$	$\mathrm{~N}=10000$	$\mathrm{~N}=100000$
Hit-and-Miss	4.66	5.48	5.77	5.79	5.77
Monte Carlo	5.65	5.69	5.59	5.73	5.77

...and the true answer is ...5.77124

$$
\int_{0}^{3} \frac{2}{9} x^{2} d x+\int_{3}^{3+\sqrt{8}}\left(2-0.25(x-3)^{2}\right) d x=\frac{2}{9} \times 2+2 \sqrt{8}-\frac{1}{12}(\sqrt{8})^{3}=5.77124
$$

Let's look at some Python code implementing these ideas.

Q: What is behind the random.uniform function in python?

How to generate numbers on a computer

How can one generate "true" randomness?

- Dice, balls in an urn, spinner, etc.
- But what if we need millions of them very quickly?
- Could use physical devices (e.g., based on principles of quantum mechanics) \Rightarrow not ideal (measurement errors, reproducibility, speed, ...)

Instead, we generate pseudo-random numbers (PRNs) using pseudo-random number generators (PRNGs).

- "pseudo" because they look random but are in fact "deterministic" (not random)
- Means that eventually, the same sequence of numbers starts appearing again (periodic behavior)

Pseudo-random number generators (PRNG)

A good PRNG should

- produce random variates u_{1}, \ldots, u_{n} (PRNs) that look random (can use theoretical and statistical tests to support this assumption)
- allow to set a seed for reproducibility
- have a large period
- be fast
- should be easy to understand and implement.

Middle-Square Method

One of the first pseudorandom number generators that was used for simulation was the "middle square method" by John von Neumann in 1949, which works as follows:

1. Start with a 4-digit positive integer Z_{0} and square it to obtain an integer with up to 8 digits; if necessary, append zeros to the left to make it exactly eight digits.
2. Take the middle four digits of this eight-digit number as the next four-digit number, Z_{1}.
3. Place a decimal point at the left of Z_{1} to obtain the first " $U(0,1)$ number," U_{1}.
4. Then let Z_{2} be the middle four digits of Z_{1}^{2} and let U_{2} be Z_{2} with a decimal point to the left, and so on.

$$
\begin{aligned}
& \mathrm{Z}_{0}=2372 \Rightarrow \mathrm{Z}_{0}^{2}=05626384 \Rightarrow \mathrm{Z}_{1}=6263 \Rightarrow \mathrm{U}_{1}=0.6263 \\
& \Rightarrow \mathrm{Z}_{1}^{2}=39225169, \mathrm{Z}_{2}=2251, \mathrm{U}_{2}=0.2251, \ldots
\end{aligned}
$$

Practice

Starting with $\mathrm{Z}_{0}=6543$, determine the first four numbers U_{1} to U_{4} output by this PRNG.

Problems with Middle-Square Method

1. Period is no larger than 10^{4}. Why?
2. If the middle 4 digits are all zeroes, the generator gets stuck and output 0 forever.
3. If the first half of a number in the sequence is zeroes, the subsequent numbers will be decreasing to zero. (Try $Z_{0}=3001$)
4. Can also get stuck on certain values: ($\operatorname{Try} Z_{0}=2500$).
5. Other bad choices with very short cycles: ($\left.\operatorname{Try} Z_{0}=0540\right)$

Basic Principles for Pseudorandom Number Generator (PRNG)

- PRNG usually output (pseudorandom) numbers between 0 and 1
- PRNG works by applying a transition function to a state, and then an output transformation from the state to a (pseudorandom)number between 0 and 1

- state is typically a whole number (or a list of whole numbers) between 0 and $m-1$ where m is a large whole number
- if state x_{i} returns to x_{0}, the sequence starts repeating itself (period length of \mathfrak{i})
- to make sure we stay in the range $\{0,1, \ldots, m-1\}$ we need modular arithmetic

Tool for PRNG: Modular Arithmetic

Linear Congruential Generators

- Lehmer in 1951 introduced linear congruential generators (LCGs) which are PRNGs recursively defined by

$$
x_{n}=a x_{n-1} \quad \bmod m, \quad n \geqslant 0
$$

with multiplier a, modulus $m \geqslant 0$ and seed x_{0}.

- Maximum period of an LCG is $m-1$. Why?
- Maxium period is reached if a is a primitive element mod m... Means smallest positive integer r such that $a^{r} \bmod m=1$ is $r=m-1$.
- Q: find a primitive element $\bmod 7$

LCGs

$x_{n}=a x_{n-1} \quad \bmod m$,

To obtain PRNs, simplest output function is $u_{n}=\frac{x_{n}}{m} \in[0,1)$.
Toy Example: $m=11, a=6, x_{0}=1 \Rightarrow x_{n}=6 x_{n-1} \bmod 11$, What sequence $u_{0}, u_{1}, u_{2}, \ldots$ do you get? What is the period?

Multiple Recursive Generator

Idea: look back more than one state, e.g., use

$$
x_{n}=a x_{n-1}+b x_{n-2}+c x_{n-3} \bmod m
$$

MRG32k3a

Combined MRG from P. L'Ecuyer (Montreal) with 2 components and for which

$$
\begin{aligned}
x_{1, n} & =\left(1403580 x_{1, n-2}-810728 x_{1, n-3}\right) \bmod \left(2^{32}-209\right) \\
x_{2, n} & =\left(527612 x_{2, n-1}-1370589 x_{2, n-3}\right) \bmod \left(2^{32}-22853\right) \\
z_{n} & =\left(x_{1, n}-x_{2, n}\right) \bmod \left(2^{32}-209\right) \\
u_{n} & =z_{n} /\left(2^{32}-209\right) .
\end{aligned}
$$

- The parameters of this generator were found through extensive searches based on theoretical and statistical tests.
- Period of about 2^{191}. This is 3138550867693340381917894711603833208051177722232017256448
- Code available online at http://simul.iro.umontreal.ca/rng/MRG32k3a.c

Quasi-Random Numbers

- Random samples can be irregular (clusters of points, large gaps with no points)
- Since computer is already creating "fake" numbers, could we not make them be less irregular, more uniformly distributed?
- This is the idea behind quasi-random numbers also referred to as low-discrepancy point sets or sequences

Low-discrepancy point sets

Figure: Four different point sets with $n=64$: pseudorandom (top left), rectangular grid (top right), Korobov lattice (bottom left), and Sobol' (bottom right).

Low-discrepancy sequences: a first example

In one dimension, we can construct a sequence of points u_{0}, u_{1}, \ldots with a low discrepancy as follows:

1. Choose a base b
2. To define u_{i} :

- expand i in base b, i.e., write $i=a_{0}+a_{1} b+a_{2} b^{2}+a_{3} b^{3}+\ldots$:

$$
\text { e.g., for } i=5 \text { and } b=2 \text { write } 5=101^{\prime} \text {, i.e., } 5=\left(2^{0}+2^{2}\right) \text { so }
$$

$$
a_{0}=a_{2}=1 \text { and all other } a_{1} \text { 's are } 0 .
$$

- apply radical-inverse function:

$$
\mathfrak{u}_{\mathrm{i}}=\mathrm{S}_{\mathrm{b}}(\mathfrak{i}):=\mathrm{a}_{0} \frac{1}{\mathrm{~b}}+\mathrm{a}_{1} \frac{1}{\mathrm{~b}^{2}}+\mathrm{a}_{2} \frac{1}{\mathrm{~b}^{3}}+\ldots,
$$

$$
\text { e.g., for } i=5 \text { and } b=2 \text { we get } u_{5}=S_{2}(5)=1 \times 2^{-1}+1 \times 2^{-3}=5 / 8
$$ Try it: What is $S_{3}(5)$?

This yields the van der Corput sequence in base b, denoted S_{b} (goes back to 1935)

van der Corput Sequence in base 2

Practice: write out the first 10 terms of the sequence S_{2} (van der Corput sequence in base 2)

van der Corput Sequences

Extending the van der Corput sequence to more than one dimension

Why? Recall for hit-and-miss we need points in two dimensions.
How do we do this? Possible approach:

- use a different base for each dimension (Halton sequence, 1960).
- That is, let S_{b} denote the van der Corput sequence in base b, and $S_{b}(n)$ be the nth term of this sequence.
- The Halton sequence in s dimensions is given by $\left(S_{b_{1}}, \ldots, S_{b_{s}}\right)$ where the b_{j} 's are pairwise co-primes.
- Typically, take b_{j} to be the j th prime number.

Halton sequence in three dimensions

$$
\begin{aligned}
& \mathbf{u}_{1}=(0,0,0) \\
& \mathbf{u}_{3}=(1 / 4,2 / 3,2 / 5) \\
& \mathbf{u}_{5}=(1 / 8,4 / 9,4 / 5)
\end{aligned}
$$

$$
\mathbf{u}_{2}=(1 / 2,1 / 3,1 / 5)
$$

$$
\mathbf{u}_{4}=(3 / 4,1 / 9,3 / 5)
$$

First two dimensions:

Go back to our computer program and test this

Key takeaways

1. Random numbers are used in numerous computing tasks for all kinds of problems
2. Computers rely on pseudorandom number generators to generate pseudo-random numbers very quickly
3. Quasi-random numbers are more uniform than pseudorandom numbers so they can often provide better approximations
4. Need a mix of mathematics, statistics and computer science to play with this and understand how it all works

MC: Why does it work?

- Want to show that $E\left(B \frac{1}{N}\left(h_{1}+h_{2}+\ldots+h_{N}\right)\right)=A$ (where B is the base)
- Sufficient to show that $E\left(h_{1}\right)=A / B$
- The h_{i} 's could take any value between 0 and 2 because x can take any value between 0 and B...
- Approximation: x can only take, say, $M=20$ values equally spaced between 0 and B, each with probability $1 / M$

MC: Why does it work

Approximation: x can take M values (mid-point of rectangles) with probability $1 / M$ \Rightarrow each rectangle corresponds to one of those M cases, with base equal to $B \times 1 / M$ and height is the value taken by h_{1}
\Rightarrow total surface of M rectangles $\approx B E\left(h_{1}\right) \underbrace{\text { total surface of } M \text { rectangles }}_{\approx A} \approx B E\left(h_{1}\right)$

