Jiang, T., & Li, M. (1994). Approximating shortest superstrings with constraints Theoret. Comput. Sci., 134, 473-491.
Reference author: T. Jiang
First name
T.
Last name
Jiang
Jiang, T., Lin, G., Ma, B., & Zhang, K. (2000). The Longest Common Subsequence Problem for Arc-Annotated Sequences
Jiang, T., Lin, G., Ma, B., & Zhang, K. (2004). The Longest Common Subsequence Problem for Arc-Annotated Sequences Journal of Discrete Algorithms 2(2): 257-270.
Vogl, C., Badger, J., Kearney, P., Li, M., Clegg, M., & Jiang, T. (2003). Probabilistic analysis indicates discordant gene trees in chloroplast evolution J. Mol. Evol., 56:3, 330-340.
Badger, J., Kearney, P., Li, M., Tsang, J., & Jiang, T. (2004). Selecting the branches for an evolutionary tree: a polynomial time approximation scheme Journal of Algorithms, 51, 1-14.
Jiang, T., Kearney, P., & Li, M. (2001). A polynomial time approximation scheme for inferring evolutionary trees from quartet topologies and its application A Polynomial Time Approximation Scheme for Inferring Evolutionary Trees from Quartet Topologies and Its Application.
Bryant, D., Berry, V., Kearney, P., Jiang, T., Li, M., Wareham, T., & Zhang, H. (2000). A practical algorithm for recovering the best supported edges of an evolutionary tree
Jiang, T., Kearney, P., & Li, M. (2001). A polynomial time approximation scheme for inferring evolutionary trees from quartet topologies and its application SIAM J. Computing, 30:6, 1942-1961.
Bryant, D., Berry, V., Kearney, P., Jiang, T., Li, M., Wareham, T., & Zhang, H. (2000). A practical algorithm for recovering the best supported edges of an evolutionary tree
DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., & Zhang, L. (2000). On computing the neares t neighbor interchange distance in D.Z. Du, P.M. Pardalos and J. Wang (eds.), Proceedings of the DIMACS Workshop on Discrete Problems With Medical Applications, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, AmericanMathematical Society, Vol. 55, Pp. 125-143.
- Previous page
- Currently on page 2 2
- Next page