DSG Seminar Series • Algorithms and Optimizations for Incremental Window-Based Aggregations
Panos K. Chrysanthis, University of Pittsburgh
Abstract: Online analytics, in most advanced scientific, business, and defense applications, rely heavily on the efficient execution of large numbers of Aggregate Continuous Queries (ACQs). ACQs continuously aggregate streaming data and periodically produce results such as max or average over a given window of the latest data. It was shown that in processing ACQs it is beneficial to use incremental evaluation, which involves storing and reusing calculations performed over the unchanged parts of the window, rather than performing the re-evaluation of the entire window after each update.