Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Wednesday, September 27, 2017 12:30 pm - 12:30 pm EDT (GMT -04:00)

PhD Seminar • Analytics for Everyone

Kareem El Gebaly, PhD candidate
David R. Cheriton School of Computer Science

The process of analyzing relational data typically involves tasks facilitating gaining familiarity or insights and coming up with findings or conclusions based on the data. This process is usually practiced by data experts (data scientists) that share their output with potentially less data expert audience (everyone).

Lei Zou, Institute of Computer Science and Technology
Peking University

In this talk, I focus on accelerating a widely employed computing pattern — set intersection, to boost a group of relevant graph algorithms. Graph’s adjacency-lists can be naturally considered as node sets, thus set intersection is a primitive operation in many graph algorithms. We propose QFilter, a set intersection algorithm using SIMD instructions. QFilter adopts a merge-based framework and compares two blocks of elements iteratively by SIMD instructions.