Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Tuesday, May 2, 2017 10:30 am - 10:30 am EDT (GMT -04:00)

DSG Seminar Series • MacroBase: Prioritizing Attention in Fast Data

Patrick Valduriez
Inria and Biology Computational Institute (IBC)

Abstract: The blooming of different cloud data management infrastructures, specialized for different kinds of data and tasks, has led to a wide diversification of DBMS interfaces and the loss of a common programming paradigm.

Amira Ghenai, PhD candidate
David R. Cheriton School of Computer Science

People regularly use web search engines to investigate the efficacy of medical treatments. Search results can contain documents that present incorrect information that contradicts current established medical understanding on whether a treatment is helpful or not for a health issue. If people are influenced by the incorrect information found in search results, they can make harmful decisions about the appropriate treatment.

Lei Zou, Institute of Computer Science and Technology
Peking University

In this talk, I focus on accelerating a widely employed computing pattern — set intersection, to boost a group of relevant graph algorithms. Graph’s adjacency-lists can be naturally considered as node sets, thus set intersection is a primitive operation in many graph algorithms. We propose QFilter, a set intersection algorithm using SIMD instructions. QFilter adopts a merge-based framework and compares two blocks of elements iteratively by SIMD instructions.

Rachel Pottinger, Department of Computer Science
University of British Columbia

Users are faced with an increasing onslaught of data, whether it's in their choices of movies to watch, assimilating data from multiple sources, or finding information relevant to their lives on open data registries.