**Graduate Studies and Postdoctoral Affairs (GSPA)**

Needles Hall, second floor, room 2201

Visit our COVID-19 information website to learn how Warriors protect Warriors.

For more detailed course information, click on a course title below.

Course ID: 002339

The concepts of formal provability and logical consequence in first order logic are introduced, and their equivalence is proved in the soundness and completeness theorems. Goedel's incompleteness theorem is discussed; making use of the halting problem of computability theory. Relative computability and the Turing degrees are further studied.

Course ID: 002341

An introduction to algebraic number theory; unique factorization, Dedekind domains, class numbers, Dirichlet's unit theorem, solutions of Diophantine equations.

Course ID: 014670

Module theory: classification of finitely generated modules over PIDs, exact sequences and tensor products, algebras, localisation, chain conditions. Primary decomposition, integral extensions, Noether's normalisation lemma, and Hilbert's Nullstellensatz.

Course ID: 013667

Lebesgue measure on the line, the Lebesgue integral, monotone and dominated convergence theorems, LP spaces, completeness and dense subspaces; separable Hilbert space, orthonormal bases; Fourier analysis on the circle, Dirichlet kernel, Riemann-Lebesgue lemma, Fejer's theorem and convergence of Fourier series.

Course ID: 002346

General measures, measurability, Caratheodory extension theorem and construction of measures, integration theory, convergence theorems, LP spaces, absolute continuity, differentiation of monotone functions, Radon-Nikodym theorem, product measures, Fubini's theorem, signed measures, Urysohn's lemma, Riesz Representation theorems for classical Banach spaces.

Course ID: 002347

The Riemann mapping theorem and several topics such as analytic continuation, harmonic functions, elliptic functions, entire functions, univalent functions, special functions. Students without the required prerequisite may seek consent of the department.

Course ID: 002349

Point-set topology; smooth manifolds, smooth maps, and tangent vectors; the tangent and cotangent bundles; vector fields, tensor fields, and differential forms; Stokes's theorem; integral curves, Lie derivatives, the Frobenius theorem; de Rham cohomology.

Course ID: 002350

Topological spaces and topological manifolds; quotient spaces; cut and paste constructions; classification of two-dimensional manifolds; fundamental group; homology groups. Additional topics may include: covering spaces; homotopy theory; selected applications to knots and combinatorial group theory.

Course ID: 002351

Reading Course

Course ID: 013668

Model theory: the semantics of first order logic including the compactness theorem and its consequences, elementary embedding and equivalence, the theory of definable sets and types, quantifier elimination, and w-stability. Set theory: well-orderings, ordinals, cardinals, Zermelo-Fraenkel axioms, axiom of choice, informal discussion of classes and independence results.

Course ID: 013669

Summation methods; analytic theory of the Riemann zeta function; Prime Number Theorem; primitive roots; quadratic reciprocity; Dirichlet characters and infinitude of primes in arithmetic progressions; assorted topics.

Course ID: 014343

Basic definitions and examples: subrepresentations and irreducible representations, tensor products of representations. Character theory. Representations as modules over the group ring, Artin-Wedderburn structure theorem for semisimple rings. Induced representations, Frobenius reciprocity, Mackeys irreducibility criterion.

Course ID: 013670

Banach and Hilbert spaces, bounded linear maps, Hahn-Banach theorem, open mapping theorem, closed graph theorem, topologies, nets, Hausdorff spaces, Tietze extension theorem, dual spaces, weak topologies, Tychonoff's theorem, Banach-Alaoglu theorem, reflexive spaces.

Course ID: 002392

An introduction to algebraic geometry through the theory of algebraic curves. General algebraic geometry: affine and projective algebraic sets, Hilbert's Nullstellensatz, co-ordinate rings, polynomial maps, rational functions and local rings. Algebraic curves: affine and projective plane curves, tangency and multiplicity, intersection numbers, Bezout's theorem and divisor class groups.

Course ID: 011875

Banach algebras, functional calculus, Gelfan transform, Jacobson radical, Banach space and Hilbert space operators, Fredholm alternative, spectral therorem for compact normal operators, ideals in C^*-algebras, linear functionals and states, Gelfand-Naimark-Segar (GNS) construction, von Neumann algebras, strong/weak operator topologies, Double Commutant theorem, Kaplansky's density theorem, spectral theorem for normal operators.

Course ID: 015700

Basic topics in Fourier analysis on locally compact groups, in particular abelian groups: Haar measure, convolution, characters, the dual group, Fourier transform, Parseval's theorem, Plancherel theorem, Pontryagin duality theorem, invrsion theorem, Bochener's theorem. Other topics such as harmonic analysis on compact or non-albian locally compact groups, Peter-Weyl theorem, amenability, probabilistic methods in harmonic analysis.

Course ID: 002391

An introduction to matrix Lie groups and their associated Lie algebras: geometry of matrix Lie groups; relations between a matrix Lie group and its Lie algebra; representation theory of matrix Lie groups.

Course ID: 016231

Review of smooth manifolds. Vector bundles. Connections and curvature, holonomy, characteristic classes. Connections on tangent bundle: torsion, geodesics, exponential map.
Riemannian geometry: Levi-Civita connection, Riemannian geodesics, Hopf-Rinow Theorem. Additional
topics if time permits.

Course ID: 011589

Review of basics of quantum information and computational complexity; Simple quantum algorithms; Quantum Fourier transform and Shor factoring algorithm: Amplitude amplification, Grover search algorithm and its optimality; Completely positive trace-preserving maps and Kraus representation; Non-locality and communication complexity; Physical realizations of quantum computation: requirements and examples; Quantum error-correction, including CSS codes, and elements of fault-tolerant computation; Quantum cryptography; Security proofs of quantum key distribution protocols; Quantum proof systems. Familiarity with theoretical computer science or quantum mechanics will also be an asset, though most students will not be familiar with both.

Needles Hall, second floor, room 2201

University of Waterloo

University of Waterloo

43.471468

-80.544205

200 University Avenue West

Waterloo,
ON,
Canada
N2L 3G1

The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land promised to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Indigenous Initiatives Office.