Publications

Prof. Linda F. Nazar

Department of Chemistry
University of Waterloo
200 University Avenue West
Waterloo, Ontario, N2L 3G1 Canada

Tel: (519) 888-4637
Fax: (519) 746-0435

Email: lfnazar@uwaterloo.ca

Web of Science Highly Cited Researchers 2018; Clarivate Analytics
The World Technology Network Award Finalist 2018

Publications by year

For a complete listing of publications, visit Linda Nazar's Google Scholar profile or her Dimensions profile.


2024

  • C. Li, R. D. Guha, S. House, A. Shyamsunder, D. Bazak, K. Zavadil, K. Persson, L. F. Nazar*, 2024. A Dynamically Bare Metal Interface Enables Reversible Magnesium Electrodeposition at 50 mAh cm-2. Joule, in press.
  • I. You, B. Singh, Mengyang Cui, G. Goward, L. Qian, Y. Wang, Z. Arthur, L.F. Nazar*, 2024. A facile route to plastic inorganic electrolytes for all-solid state batteries based on molecular design. Energy & Environ. Sci., in press. DOI: 10.1039/D4EE03944K
  • L. Qian, Y. Huang, C. Dean, I. Kochetkov, Z. Yu, L.F. Nazar*, 2024. Engineering stable decomposition products on cathode surfaces to enable high voltage all solid state batteries. Angewandte Chemie, e202413591. doi.org/10.1002/anie.202413591
  • Y. Wang, J. D. Bazak, L Zhou, B. Singh, L.F. Nazar*, 2024. Liquid-like behavior of Li-ions in super Cl-rich argyrodite. Cell Rep. Phys. Sci., in press
  • L. Merola, V. K. Singh, M. Palmer, J.K. Eckhardt, S. L Benz, T. Fuchs, L.F. Nazar, J. Sakamoto, F. H. Richter, J. Janek*, 2024. Evaluation of Oxide|Sulfide Heteroionic Interface Stability for Developing Solid-State Batteries with a Lithium-Metal Electrode ─ The Case of LLZO|Li6PS5Cl and LLZO|Li7P3S11. ACS Applied Materials and Interfaces, 16, 54847-548663.  DOI: 10.1021/acsami.4c11597
  • T. Fuchs, T. Ortmann, Juri Becker, C. G. Haslam, M. Ziegler, V. K. Singh, M. Rohnke, B. Mogwitz, K. Peppler, L.F. Nazar, J. Sakamoto, J. Janek*, 2024. Imaging the Microstructure of Lithium and Sodium Metal in “Anode-Free” Solid-State Batteries using EBSD. Nature Mater. (2024), https://doi.org/10.1038/s41563-024-02006-8
  • L. Zhou, D. Bazak, J. Liu, L.F. Nazar*, 2024. 4 V Na Solid State Batteries Enabled by a Scalable Sodium Metal Oxyhalide Solid Electrolyte. ACS Energy Lett, 9, 4093 - 4101
  • L. Qian, B. Singh, Z. Yu, N. Chen, G. King, Z. Arthur, L.F. Nazar*, 2024. Unlocking lithium ion conduction in lithium metal fluorides, Matter, 7, 3587-3607. DOI: 10.1016/j.matt.2024.06.027
  • B. Singh, Y. Wang, J. Liu, J. David Bazak, A. Shyamsunder, L.F. Nazar*, 2024.  Critical Role of Framework Flexibility and Disorder in Driving High Ionic Conductivity in LiNbOCl4, J. Am. Chem. Soc., 146, 17158-17169.  DOI: 10.1021/jacs.4c03142
  • Y. Yu, B. Singh, Z. Yu, C. Y. Kwok, I. Kochetkov, L.F. Nazar*, 2024, A Nanocrystallite CuS/nitrogen-doped carbon host improves redox kinetics in all-solid-state Li2S batteries, Adv. Energy Mater., 14, 2400845. DOI: 10.1002/aenm.202400845
  • Z. Wei, L.F. Nazar, J. Janek, 2024, Emerging halide solid electrolytes for sodium solid-state batteries: structure, conductivity, paradigm of applications.  Batteries and Supercaps, e202400005. DOI: 10.1002/batt.202400005. 
  • D. Xiulei Ji, L.F. Nazar, 2024. Best practices for evaluating the reversibility of Zn metal batteries. Nature Sustainability, 7, 98-99. DOI: 10.1038/s41893-023-01257-8 
  • C. Li, R. D. Guha, A. Shyamsunder, K. A. Persson* and L. F. Nazar*, 2024.  A weakly ion pairing electrolyte designed for high voltage magnesium batteries.  Energy Environ. Sci., 17, 190 - 201.  https://doi.org/10.1039/D3EE02861E 

2023

  • Y.Y. Huang, L. Zhou, C. Li, Z. Yu, L.F. Nazar*, 2023.  Waxing Bare High-Voltage Cathode Surfaces to Enable Sulfide Solid-State Batteries, ACS Energy Lett, 8, 4949 - 4956. DOI: 10.1021/acsenergylett.3c01717

  • C. Li, A. Shyamsunder, B. Key, L.F Nazar*, 2023. Stabilizing Magnesium Plating by a Low-Cost Zeolite Surface Membrane for High-Voltage and High-Power Mg Batteries, Joule, 7, 2798-2813. doi.org/10.1016/j.joule.2023.10.012 

  • A. Shyamsunder, M. Palmer, I. Kochetkov, J. Sakamoto*, L.F. Nazar*, 2023. Surface chemistry of LLZO garnet electrolytes with sulfur in an EPD solvent. ACS AMI, 15, 52571- 52580. DOI: 10.1021/acsami.3c12278. 

  • L. Zhou, J. D. Bazak, B. Singh, C. Li, A. Assoud, N.M. Washton, V. Murugesan, L.F. Nazar*, 2023. A new sodium thioborate fast ion conductor: Na3B5S9Angewandte Chemie, 62, e2023004. DOI: 10.1002/anie.202300404 

  • L. Zhou, T.T. Zuo, C. Li, Q. Zhang, J. Janek, L.F. Nazar*, 2023, Li3-xZrx(Ho/Lu)1-xCl6 enables ultrahigh loading all solid-state batteries with a pre-lithiated Si anode.  ACS Energy Lett, 8, 3102 - 3111. 

  • C. Li, R. Kingsbury, A. Shyamsunder, T. Fister, K. Persson, L.F. Nazar*, 2023. Enabling Selective Zinc-Ion Intercalation by a Eutectic Electrolyte for Practical Anodeless Zinc Batteries. Nature Commun., 14, 3067-3077. DOI: 10.1038/s41467-023-38460-2

  • C.Y. Kwok, Shiqi Xu, I. Kochetkov, Laidong Zhou, L. F. Nazar*, High-Performance All-Solid-State Li2S Batteries Using an Interfacial Redox Mediator, 2023. Energy Environ. Sci., 16, 610-618. DOI: 10.1039/D2EE03297J

  • E.P. Ramos, A. Assoud, A. Shyamsunder, L. Zhou, D. Rettenwander, L.F. Nazar*, 2023, Structure-transport correlations in Na11Sn2SbSe12 and its sulfide solid solutions. APL Mater., 11, 011104.

2022

  • E. P. Ramos, A. Assoud, N. Kim, Kotchetkov, L. Wan and L.F. Nazar*, 2022. Triggering fast Li-ion conduction in LiPSI, ACS Mater. Lett., 5, 144-154. IF = 8.5. 10.1021/acsmaterialslett.2c00821.

  • L. Blanc, Y. Y. Choi, A. Shysamsunder, S. Lapidus, B. Key, C. Bartel, G. Ceder*, L.F. Nazar*, 2022.  Phase stability and kinetics of topotactic dual Ca2+-Na+ ion electrochemistry in NaSICON NaV2(PO4)3. Chem. Mater., on-line. 10.1021/acs.chemmater.2c02816.

  • T.-T. Zuo, F. Walther, J. H. Teo, R. Ruess, Yubo Wang, M. Rohnke, D. Schroeder, L.F. Nazar, J. Janek*, 2022. Impact of the chlorination of lithium argyrodites on the electrolyte/cathode interface in solid-state batteries, Angewandte Chemie, 62, e202213228.  DOI:  10.1002/anie.202213228.

  • E. P. Ramos, J. D. Bazak, A. Assoud, A. Huq, G. Goward*, and L. F. Nazar*, 2022,  Structure of the Solid-State Electrolyte Li3+2xP1-xAlxS4:  Lithium Ion Transport Properties in Crystalline vs Glassy phases, ACS AMI, on-line. 10.1021/acsami.2c16776.

  • L. Zhou, Q. Zhang, L.F. Nazar*, 2022. Li-Rich and Halide-Deficient Argyrodite Fast Ion Conductors, Chem. Mater, 34, 21, 9634–9643. 10.1021/acs.chemmater.2c02343.

  • I. Kochetkov, T.-T. Zuo, R. Ruess, B. Singh, L. Zhou, K. Kaup, J. Janek*, L.F. Nazar*, 2022, Different interfacial reactivity of lithium metal chloride electrolytes with high voltage cathodes determines solid-state battery performance, Energy Environ. Sci., 15, 3933 - 3944.

  • L. Zhou, T.-T. Zuo, C. Y. Kwok, S. Y. Kim, A. Assoud, Q. Zhang, J. Janek, L. F. Nazar*, 2022, High areal capacity long cycle life 4 V ceramic all-solid-state Li ion batteries enabled by chloride solid electrolytes, Nature Energy, 7, 83–93. DOI: 10.1038/s41560-021- 00952 - 0.

  • Q. Pang, J. Meng, S. Gupta, C.Y. Kwok, J. Zhao, Y. Jin, L. Xu, Ö. Karahan, Z. Wang, S. Toll,  L.Mai, L. F. Nazar, M. Balasubramanian, B. Narayanan, D. R. Sadoway*, 2022, Fast-charging aluminium-chalcogen batteries resistant to dendrite formation, Nature, 608, 704-711.

  • C. Bauer, L.F. Nazar et al., 2022.  Charging sustainable batteries. Nature Sustainability, 5, 176-178. IF = 27.2  10.1038/s41893-022-00864-1.

  • C. Li, S. Jin, L.A. Archer and L.F. Nazar*, 2022.  Towards practical aqueous Zn-ion batteries forstationary grid storage. Joule, 6,1733-1738.  IF = 41.3.  10.1016/j.joule.2022.06.002

  • C. Li, A. Shyamsunder, A. G. Hoane, D. M. Long, C.Y. Kwok, K. Zavadil, A. Gewirth*, and L.F. Nazar*, 2022. Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule, 6, 1103 - 1120.

  • C. Li, R. Kingsbury, L. Zhou, A. Shyamsunder, K. Persson, L.F. Nazar*, 2022. Tuning the solvation structure in aqueous zinc batteries to maximize Zn-ion intercalation and optimize dendrite-free zinc plating, ACS Energy Lett, 7, 533-540.

  • Z. Zhang and L.F. Nazar*, 2022, Exploiting the Paddle-Wheel Mechanism for the Design of Fast Ion Conductors (invited), Nature Mater. Rev., 7, 389 - 405.  DOI:  10.1038/s41578-021-00401-0.

2021

  • F. Wang, L. E. Blanc, Q. Li, A. Faraone, X. Ji, J. A. Dura, E. Hu, K. Xu*, C. Wang*, L. F. Nazar*, 2021. Quantifying and Suppressing Proton Intercalation to Enable High-Voltage Zn-ion Batteries, Adv. Energ. Mater, 11, 2102016 – 2102027. DOI: 10.1002/aenm.202102016. IF = 29.7
  • L. Blanc, C. Bartel, H. Kim, Y. Tian, H. Kim, A. Miura, G. Ceder*, and L.F. Nazar*, 2021. Towards the development of a high-voltage Mg cathode using a chromium sulfide host.  ACS Mater. Lett., 3, 1213-1220. DOI: 10.1021/acsmaterialslett.1c00308.
  • L. Pokrajac, L.F. Nazar, S. Mitra et al., 2021, Nanotechnology for a sustainable future: addressing global challenges with the International Network4Sustainable nanotechnology. ACS Nano, 15, 18608-18623.
  • I. Abate, S. Y. Kim, C. Das Pemmaraju, M. F. Toney, W. Yang, T.P. Devereaux*, L.F. Nazar*, and W. Chueh*, 2021.  Fully reversible oxygen anion redox with low hysteresis in a high voltage cathode. Energy Environ. Sci., 14, 4858-4867. DOI: 10.1039/D1EE01037A.
  • L. Zhou, N. Minafra, W. Zeier* and L.F. Nazar*, 2021, Innovative approaches to Argyrodite solid electrolytes for all-solid-state batteries, invited, Acc. Chem. Res., 54, 2717-2728. DOI:  10.1021/acs.accounts.0c00874.
  • S. Y. Kim, K. Kaup, K.-H. Park, A. Assoud, L. Zhou, J. Liu, X. Wu, and L.F. Nazar*, 2021, Lithium ytterbium based halide solid electrolytes for high voltage all-solid-state batteries, ACS Mater. Lett., 3, 930-938.  DOI: 10.1021/acsmaterialslett.1c00142.
  • C. Park, S.Y. Kim, S. Hosseini Vajargah, P. Hartmann and L.F. Nazar*, 2021, Inhibiting oxygen release from Li-rich, Mn-rich layered oxides with a solution processable oxygen scavenger polymer. Adv. Energy. Mater., 11, 2100552 -2100563.  DOI:  10.1002/aenm.202100552.
  • K. Kaup, K. Bishop, A. Assoud, J. Liu, L.F. Nazar*, 2021, A fast-ion conducting thioboracite with a perovskite topology and argyrodite-like lithium substructure, J. Am. Chem. Soc, 143, 6952-6961.  DOI: 10.1021/jacs.1c00941.
  • M. A Philip, R. T Haasch, J. Kim, J. Yang, R. Yang, I. R Kochetkov, L. F Nazar, A Gewirth*, 2021. Enabling High Capacity and Coulombic Efficiency for Li‐NCM811 Cells Using a Highly Concentrated Electrolyte, Batteries & Supercaps, 4, 294 – 303.
  • I. Abate, S. Y. Kim, C. D. Pemmaraju, M.F. Toney, W. Yang, T.P. Devereux, W.C. Chueh*, L.F. Nazar*, 2021, The role of metal substitution in tuning anion redox in sodium metal layered oxides revealed by X-ray spectroscopy and theory, Angewandte Chemie Int. Ed., 60, 10880-10887.  DOI: 10.1002/anie.202012205.
  • P. Adeli, J. D. Bazak, A. Huq, G. Goward*, L.F. Nazar*, 2021, Influence of aliovalent cation substitution and mechanical compression on Li-ion conductivity and diffusivity in argyrodite solid electrolytes, Chem. Mater., 33, 146-157.  DOI:   10.1021/acs.chemmater.0c03090.
  • K.  Kaup, A. Assoud, J. Liu, L.F. Nazar*, 2021, Fast Li-ion conductivity in super-adamantanoid lithium thioborate halides, Angewandte Chemie Int. Ed., 60, 6975-6980. DOI: 10.1002/anie.202013339, in press.

Back to top.

2020

  • S. Xu, C.Y. Kwok, L. Zhou, Z. Zhang, I. Kochetkov, L. F. Nazar*, 2020, A high energy density all-solid-state Li-S battery enabled by conversion-intercalation hybrid cathode architecture. Adv. Funct. Mater., 31, 2004239.
  • L. Zhou, C. Y. Kwok, A. Shyamsunder, Q. Zhang, X. Wu, L. F. Nazar,* 2020, A new halospinel superionic conductor for high-voltage all solid state lithium batteries, Energy Environ. Sci, 13, 2056 -2063.  DOI: 10.1039/D0EE01017K.

  • S. Kim, L. Yin, M.H. Lee, P. Parajuli, L. E. Blanc, T. Fister, H. Park, B.J. Kwon, B.J. Ingram, P. Zapol, R. F. Klie, K. Kang, S. H. Lapidus, L.F. Nazar*, J. T. Vaughey*, 2020, High voltage phosphate cathodes for rechargeable Ca-ion batteries, 2020, ACS Energy Lett, 5, 3203–3211. DOI: 10.1021/acsenergylett.0c01663.

  • Z. Zhang, H. Li, K. Kaup, L. Zhou, P.N. Roy, L.F. Nazar*, 2020, Targeting superionic conductivity at room temperature by turning on anion rotation in fast ion conductors, Matter, 2, 1667-1684. DOI: https://doi.org/10.1016/j.matt.2020.04.027.

  • L. Blanc, D. Kundu, L.F. Nazar*, 2020, Scientific challenges for the implementation of Zn-ion batteries, Joule, 4, 771-799. DOI:10.1016/j.joule.2020.03.002

  • W. E. Gent*, I. I. Abate, W. Yang, L.F. Nazar, W. Chueh, 2020, Design rules for high-valent redox in intercalation electrodes, Joule, 4, 1369 -1397.  DOI: 10.1016/j.joule.2020.05.004.

  • R. Wang, J. Yu, J. Tang, R.  Meng, L.F. Nazar, L. Huang, X. Liang*, 2020, Insights into dendrite suppression by alloys and the fabrication of a flexible alloy-polymer protected lithium metal anode, Energy Storage Materials, 32, 178-184.  DOI: 10.1016/j.ensm.2020.07.039

  • L. Trahey, F. R. Brushett, N. P. Balsara, G. Ceder, L. Cheng, Y.-M. Chiang, N.T. Hahn, B. J. Ingram, S. D. Minteer, J. S. Moore, K. T. Mueller, L. F. Nazar, K.A. Persson, D.J. Siegel, K. Xu, K.R. Zavadil, V. Srinivasan, G. W. Crabtree, 2020.  Energy storage emerging: A perspective from the Joint Center for Energy Storage Research,  Proc. Nat. Acad. Sci.117, 12550-12557. 

  • K. Kaup, L. Zhou, A. Huq, L.F. Nazar*, 2020, Impact of the Li substructure on the diffusion pathways in alpha and beta-Li3PS4: an in-situ high temperature neutron diffraction study, J. Mater. Chem. A., 8, 12446 - 12456.  DOI: 10.1039/D0TA02805C.

  • F. Makhlooghiazad*, M. Sharma, Z. Zhang, P. Howlett, M. Forsyth, L.F. Nazar*, 2020, Stable High Temperature Cycling of Na Metal Batteries Based on Na3V2(PO4)3 and Na2FeP2O7 Cathodes in NaFSI-Rich Organic Ionic Plastic Crystal Electrolytes, J. Phys. Chem. Lett., 11, 2092-2210. DOI: 10.1021/acs.jpclett.0c00149.

  • X. Sun, L. Blanc, V. Duffort and L.F. Nazar*, 2020, Direct Nano-Synthesis Methods Greatly Benefit Mg-Battery Cathode Performance, Small Methods, 4, 2000029. DOI: doi.org/10.1002/smtd.202000029.

  • W.-J. Kwak, R. Sharma, D. Sharon, C. Xia, H. Kim, J. Johnson, P. Bruce, L.F Nazar*, Y.-K. Sun, A. Frimer, M. Noked, S. Freunberger, D. Aurbach, 2020, Lithium-Oxygen Batteries and Related Systems: Potential, Status and Future, Chem. Rev., 120, 6626 - 6683. DOI: 10.1021/acs.chemrev.9b00609.

  • K.-H. Park, K. Kaup, A. Assoud, Q. Zhang, X. Wu, and L. F. Nazar*, 2020, High Voltage Superionic Halide Solid Electrolytes for All-Solid-State Li-Ion Batteries, ACS Energy Lett., 5, 533-539.  DOI: 10.1021/acsenergylett.9b02599.

  • K. Kaup, J.D. Bazak, S. H. Vajargah, X. Wu, J. Kulisch, G. Goward, L.F. Nazar*, 2020, A lithium oxythioborosilicate solid electrolyte glass with superionic conductivity. Adv. Energy Mater, 10, 1902783.  DOI:  10.1002/aenm.201902783.

Back to top.

2019

  • Z. Zhang, P.N. Roy, H. Li, M. Avdeev and L.F. Nazar*, 2019, Coupled Cation−Anion Dynamics Enhances Cation Mobility in Room-Temperature Superionic Solid-State Electrolytes, J. Am. Chem. Soc., 141, 19360-19372.   DOI:  10.1021/jacs.9b09343.

  • L. Zhou, A. Assoud, Q. Zhang, X. Wu, and L.F. Nazar*, 2019, A New Family of Argyrodite Thioantimonate Lithium Superionic Conductors.  J. Am. Chem. Soc., 141, 19002-19013. DOI: 10.1021/jacs.9b08357.

  • A. Shyamsunder, L. Blanc and L.F. Nazar*, 2019, Reversible Calcium Plating and Stripping at Room Temperature Using a Borate Salt. ACS Energy Lett., 4, 2271-2276. DOI: 10.1021/acsenergylett.9b01550.

  • L. Zhou, A. Assoud, P. Hartmann, J. Kulisch, and L.F. Nazar*, 2019, An Entropically Stabilized Fast-ion Conductor, Li3+xP1-xSixS4, Chem. Mater., 31, 7801-7811. DOI: 10.1021/acs.chemmater.9b00657

  • Z. Zhang, Z. Zou, K. Kaup, R. Xiao, S. Shi, M. Avdeev*, Y.S. Hu, D. Wang, B. He, H. Li, X. Huang, L.F. Nazar*, and L. Chen, 2019, Correlated migration invokes higher Na+-ion conductivity in NaSICON-type electrolytes, Adv. Energ. Mater, 9, 1902373. DOI: 10.1002/aenm.201902373.

  • C. Y. Kwok, A. Worku, Q. Pang, X. Liang, M. Gauthier,* L. F. Nazar*, 2019, The Impact of Mechanical Properties on a Functionalized Cross-linked Binder for the Longevity of High Energy Density Li-S Batteries. ACS Appl. Mater. Interfaces, 11, 22481-22491. DOI: 10.1021/acsami.9b06456.

  • P. Adeli, D. Bazak, A. Huq, G. Goward*, and L.F. Nazar*, 2019, Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chemie Int. Ed., 58, 8681–8686. DOI: 10.1002/anie.201814222.

  • L. Zhou, F. Lalere, X. Sun, P. Hartmann, and L.F. Nazar*, 2019, Solvent-engineered synthesis of Argyrodite Li6-yPS5-yX1+y (X= Cl, Br) solid electrolytes with high ionic conductivity.  ACS Energy Lett, 4, 265 - 270. DOI: 10.1021/acsenergylett.8b01997. In top downloaded papers that month.

  • Q. Pang, D. Kundu, X. Liang, L. F. Nazar*,2019, Lightweight Magnesium Boride Mediates Polysulfide Redox and Promises High-Energy-Density Lithium-Sulfur Batteries, Joule, 136 -148. On line Oct 23, 2018. DOI: 10.1016/j.joule.2018.09.024.  Featured in C&E News, Oct 29, 2018.

Back to top.

2018

  • Q. Pang, L. Zhou and L.F. Nazar*, 2018, Elastic and Li+-ion-conducting hybrid membrane stabilizes Li metal plating, Proc. Nat. Acad. Sci., 115, 12389 - 12394. DOI: 10.1073/pnas.1809187115

  • C. Xia, C.Y. Kwok, L.F. Nazar*, 2018, A High Energy Density Lithium-Oxygen Battery Based on a Reversible Four Electron Conversion to Lithium Oxide, Science, 361, 777-781. 

  • E. P. Ramos, Z. Zhang, A. Assoud, K. Kaup F. Lalère, and L.F. Nazar*, 2018,  Correlating Ion Mobility and Single Crystal Structure in Sodium-ion Chalcogenide-Based Solid State Fast Ion Conductors: Na11Sn2PnS12 (Pn= Sb, P), Chem. Mater30, 7413-7417. DOI: 10.1021/acs.chemmater.8b02077.

  • Q. Pang, X. Liang, P. Hartmann and L.F. Nazar*, 2018, Stabilizing Li Plating by a Biphasic Surface Layer Formed In Situ, Angewandte Chemie, 57, 9795 -9798.  Hot paper.

  • Z. Zhang, Y. Shao, B. Lotsch, Y.S. Hu, H. Li, J. Janek*, C. Nan, L.F. Nazar*, J. Maier*, M. Armand, L. Chen*, 2018, New Horizons for Inorganic Solid State Ion Conductors, Energy & Environ Sci, 11, 1945 - 1976.

  • Q. Pang, A. Shyamsunder, B. Narayanan, C.Y. Kwok, L.A. Curtiss and L.F. Nazar*, 2018, Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteriesNature Energy, 3, 783-791. Featured in C&E News, Aug 16, 2018.

  • P. Bonnick, L. Blanc, S. Hosseini Vajargah, C.W. Lee, X. Sun, M. Balasubramanian, L.F. Nazar*, 2018, Insights into Mg2+ Intercalation in a Zero-Strain Material: Thiospinel MgxZr2S4Chem. Mater., 30, 4683 - 4693.   

  • Z. Li, S. Ganapathy, Y. Xu, Q. Zhu, W. Chen, I. Kochetkov, C. George, L.F. Nazar, M. Wagemaker*, 2018, Fe2O3 nanoparticle seed catalysts enhance cyclability on deep (dis)charge in aprotic Li-O2 batteries, Adv. Energy Mater., 1703513 -1703519.  DOI:  10.1002/aenm.201703513.

  • D. Kundu, S. Hosseini, L. Wen, B. Adams, D. Prendergast, and L. F. Nazar*, 2018, Aqueous vs Nonaqueous Divalent-Ion Batteries: Consequences of the Desolvation Penalty at the Interface, Energy & Environ Sci, 11, 881 - 892.

  • Z. Zhang, E. Ramos, F. Lalere, A. Assoud, K. Kaup, P. Hartmann, L.F. Nazar*, 2018, Na11Sn2PS12: A New Solid State Sodium Superionic Conductor, Energy & Environ Sci, 11, 87 – 93. 

  • K. Kaup, F. Lalere, P. Hartmann, L.F. Nazar*, 2018, Correlation of Structure and Fast Ion Conductivity in the Solid Solution Series Li1+2xZn1–xPS4, Chem. Mater, 30, 592-596.  

  • X. Sun, L. Blanc, G.M. Nolis, P. Bonnick, J. Cabana, and L.F Nazar*, 2018, NaV1.25Ti0.75O4: a potential post spinel cathode material for Mg batteries, Chem. Mater, 30, 121-128.

Back to top.

2017

  • Q. Pang, X. Liang, A. Shysamsunder and L.F. Nazar*, 2017, An in vivo formed solid electrolyte surface layer enables stable plating of Li metal, Joule, 1, 871-886. 

  • S.Y. Kim, D. Kundu, and L. F. Nazar*, 2017, A 4 V Na+ Intercalation Material in a New Na-Ion Cathode Family, Adv. Energy Mater., 1701729 – 1701735.                     

  • X. Liang, Q. Pang, I. Kochetkov, M. Safont-Sempere, H. Huang, X. Sun, L.F. Nazar*, 2017, A facile surface chemistry route to a stabilized lithium metal anode, Nature Energy, 2, 17119 – 17126. 

  • E. Talaie, S.Y. Kim and L.F. Nazar*, 2017, Structural Evolution and Redox Processes Involved in the Electrochemical Cycling of P2–Na0.67[Mn0.66Fe0.20Cu0.14]O2, Chem. Mater, 29,  6684–6697.

  • X. Sun, R. Tripathi, G. Popov, and L.F. Nazar*, 2017, Stabilization of Lithium Transition-Metal Silicates in the Olivine Structure, Inorg. Chem. 56, 9931–9937.

  • C.-W. Lee, Q. Pang, S. Ha, L. Cheng, S.-D. Han, K.G. Gallagher*, L. F. Nazar*, M. Balasubramanian*, 2017, Directing the lithium-sulfur reaction pathway via sparingly solvating electrolytes for high energy density batteries, ACS Central Science, 3, 605-613.

  • P. Bonnick, X. Sun, and L.F. Nazar*, 2017,Monovalent versus Divalent Cation Diffusion in Thiospinel Ti2S4, J. Phys. Chem. Lett., 8, 2253 -2257. DOI: 10.1021/acs.jpclett.7b00618.

  • G. He and L.F. Nazar*, 2017, Crystallite size control of Prussian white analogues for non-aqueous potassium-ion batteries, 2017, ACS Energy Lett, 2, 1122-1127. DOI: 10.1021/acsenergylett.7b00179.

  • H. Wang, N. Sa, M.N. He, X. Liang, L.F. Nazar, M. Balasubramanian, K.G. Gallagher, B. Key*, 2017, In Situ NMR Observation of the Temporal Speciation of Lithium Sulfur Batteries during Electrochemical Cycling, 2017, J. Phys. Chem. C., 121, 6011-6017. DOI: 10.1021/acs.jpcc.7b01922.

  • A. Shyamsunder, W. Beichel, P. Klose, Q. Pang, H. Scherer, A. Hoffmann, G.K. Murphy, I. Krossing* and L.F. Nazar*, 2017, Inhibiting polysulfide shuttle in Li-S batteries through low ion-pairing salts and a triflamide solvent, Angewandte Chemie, 56, 6192-6197. DOI: 10.1002/anie.201701026.

  • E. de la Llave, P.K. Nayak, E. Levi, T.R. Penki, S. Bubil, P. Hartmann, F.- F. Chesneau, M. Greenstein, L. F. Nazar, D. Aurbach,* 2017, Electrochemical performance of Na0.6[Li0.2Ni0.2Mn0.6]O2 cathodes with high-working average voltage for Na-ion batteries, J. Mater. Chem. 5, 5858-5864. DOI: 10.1039/C6TA10577G.

  • Q. Pang, X. Liang, Joern Kulisch, C. Y. Kwok, and L. F. Nazar*, 2017, A Comprehensive Approach Towards Stable Lithium-Sulfur Batteries with High Volumetric Energy Density, Adv. Energy Mater, 7,1601630 – 1601638.DOI: /10.1002/aenm.201601630.

  • E. Talaie, P. Bonnick, X. Sun, Q. Pang, X. Liang, L.F. Nazar*, 2017, Methods and Protocols for Electrochemical Energy Storage Materials Research, Chem. Mater, 29, 90–105.

  • X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, and L. F. Nazar*, 2017, Interwoven MXene Nanosheet/Carbon-Nanotube Composites as Lithium-Sulfur Battery Cathode Hosts, Advanced Materials, 29, 1603040 – 1603046.  DOI: 10.1002/adma.201603040. on-line 2016.

Back to top.

2016

  • L.F. Nazar*, Nano on Reflection (part of a collection of articles on experts in different areas of nanotechnology), 2016, Nature Nanotech, 11, 828-834.

  • E. de la Llave, E. Talaie, E. Levi, P. Kumar, M. Dixit, P. T. Rao, P. Hartmann, F.- F. Chesneau, D. T. Major, M. Greenstein, D. Aurbach,,* L. F. Nazar*,  2016, Improving Energy Density and Structural Stability of Manganese Oxide Cathodes for Na-ion Batteries by Structural Lithium Substitution, Chem. Mater, 28, 9064-9076.

  • G. S. Gautam, X. Sun, V. Duffort, L. F. Nazar* and G. Ceder*, 2016, Impact of Intermediate Sites on Bulk Diffusion Barriers: Mg Intercalation in Mg2Mo3O8, J. Mater. Chem. A, 4, 17643-17648.

  • Colin, R. Black, I. Kotchoff, V. D. Addison*, L. F. Nazar* and B. McCloskey,*  2016, Implications of 4e- reduction of O2 via iodide redox mediation in Li-O2 cells, ACS Energy Lett, 1, 747-756.

  • S. Ganapathy, J. Heringa, M. Anastasaki, B.D. Adams, M. van Hulzen, S. Basak, Z. Li, J.P. Wright, L.F. Nazar, N. H. van Dijk and M. Wagemaker*, 2016, Operando nanobeam diffraction to follow the decomposition of individual Li2O2 grains in a non-aqueous Li-O2 battery, J. Phys. Chem. Lett., 7, 3388–3394.  DOI 10.1021/acs.jpclett.6b01368.

  • C. Xia, R. Fernandes, F.H. Cho, N. Sudhakar, B. Buonacorsi, S. Walker, M. Xu, J. Baugh* and L. F. Nazar*, 2016, Direct Evidence of Solution-Mediated Superoxide Transport and Organic Radical Formation in Sodium Oxygen Batteries, J. Am. Chem. Soc., 138,11219 - 11226. DOI:  10.1021/jacs6b05382.

  • D. Aurbach, B. McCloskey, L.F. Nazar and P.G. Bruce, 2016, Advances in the Rechargeable Lithium-air Battery, Nature Energy 1: 16128.   DOI  10.1038/NENERGY.2016.128.  Invited Review.

  • Q.Pang, X. Liang, C.Y. Kwok, L.F. Nazar*, 2016, Advances in Li-S batteries based on multifunctional cathodes and electrolytes, Nature Energy, 1: 16132. DOI: 10.1038/NENERGY.2016.132  Invited Review.

  • M. R. Busche, D. A. Weber, Y. Schneider, S. Wenzel, C. Dietrich, H. Weigand, D. Walter, S. Sedlmaier, D. Houtarde, L. F. Nazar, and J Janek*, 2016,In situ monitoring of fast Li-ion conductor Li7P3S11 crystallization inside a hot-press setup, Chem. Mater. 28, 6152 - 6155. DOI: 10.1021/acs.chemmater.6b02163.

  • V. Duffort, X. Sun, and L.F. Nazar*, 2016, Screening for positive electrodes for magnesium batteries: A protocol for studies at elevated temperature, Chem. Comm, 52, 12458-12461, DOI:  10.1039/c6cc05363g.

  • D. Kundu, B. D. Adams, V. Duffort, S. Hosseini and L. F. Nazar*, 2016, A high capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode, Nature Energy, 1: 16119. DOI:  10.1038/NENERGY.2016.119.  Featured in C & E News, Sep 5, 2016.

  • M. Safari, C.Y. Kwok and L.F. Nazar*, 2016, Transport Properties of Polysulfide Species in Lithium– Sulfur Battery Electrolytes: Coupling of Experiment and Theory, ACS Central Science, 2, 560-568. DOI:  10.1021/acscentsci.6b00169.

  • X.Sun, P. Bonnick and L.F. Nazar*, 2016, Layered TiS2 Positive Electrode for Mg Batteries, ACS Energy Lett., 1, 297-301.  DOI: 10.1021/acsenergylett.6b00145.

  • T. Matsuyama, A.Hayashi*, C. J. Hart, L. F. Nazar, M. Tatsumisago*, 2016, Amorphous TiS3/S/C composite positive electrodes with high capacity for rechargeable lithium batteries, J. Electrochem. Soc., 163, A1730-A1735. DOI: 10.1149/2.1061608jes.

  • X. Sun, P. Bonnick, V. Duffort, M. Liu, Z. Rong, G. Ceder, K. Persson and L. F. Nazar*, 2016, A High Capacity Thiospinel Cathode for Mg Batteries, Energy Environmental Science, 9, 2273-2277,  DOI: 10.1039/C6EE00724D.

  • Junghoon Ha, Brian Adams, Jae Hyun Cho, Victor Duffort, Jong Hak Kim, Kyung Yoon Chung, Byung Won Cho, Linda F. Nazar,* and Si Hyoung Oh,* 2016, A conditioning-Free Magnesium Aluminum Chloride Complex Electrolyte for Rechargeable Magnesium Batteries, J. Mater. Chem. A, 2016, 4, 7160-7164. DOI: 10.1039/C6TA01684G

  • Robert Black, Abhinandan Shyamsunder, Parvin Adeli, Dipan Kundu, Graham Murphy, and L. F. Nazar*, 2016, The Nature and Impact of Side Reactions in Glyme-based Sodium-Oxygen Batteries, ChemSusChem., 9, 1795-1803. DOI:  10.1002/cssc.201600034.

  • X. Liang, and L.F. Nazar*, 2016, In Situ Reactive Assembly of Scalable Core-Shell Sulfur-MnO2 Composite Cathodes ACS Nano, 10, 4192-4198.  DOI:  10.1021/acsnano.5b07458.

  • Xiaoqi Sun, V. Duffort, and L. F. Nazar*, 2016, Prussian Blue Mg-Li Hybrid Batteries, Advanced Science, 3, 1600044. DOI:  10.1002/advs.201600044

  • Q. Pang and L.F. Nazar*, 2016, Long-life and High Areal Capacity Lithium-Sulfur Batteries Enabled by a Light-weight Polar Cathode Host with Intrinsic Polysulfide Adsorption, ACS Nano, 10, 4111-4118.

  • Xiaoqi Sun, Victor Duffort, L. Mehdi, N. Browning and L.F. Nazar*, 2016, Investigation of the Mechanism of Mg Insertion in Birnessite in Non-aqueous and Aqueous Rechargeable Mg-ion Batteries, Chem. Mater., 28, 534-542. DOI:  10.1021/acs.chemmater.5b03983

  • Q. Pang, D. Kundu, L.F. Nazar*, 2016, A Graphene-like Metallic Cathode Host For Long-life and High-loading Lithium-Sulfur Batteries, Materials Horizons, 3, 130-136.  DOI: 10.1039/C5MH00246J.

  • X. Liang, C.Y. Kwok, F. Mori-C. J. Hart, M. Cuisinier, D. Houtarde, Q. Pang, K. Kaup, H. Sommer, T. B. and L. F. Nazar*, 2016, Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the ‘Goldilocks’ principle. Advanced Energy Materials, 6, 1501636.  DOI: 10.1002/aenm.201501636.

Back to top.

2015

  • D. Kundu, R. Black, B. Adams, and L.F. Nazar*, 2015, A Highly Active Low Voltage Redox Mediator for Enhanced Rechargeability of Lithium–Oxygen Batteries, 1, 510–515, DOI:  10.1021/acscentsci.5b00267.

  • Q. Pang, X. Liang, and L.F. Nazar*, 2015, Review: The Importance of Chemical Interactions Between Sulfur Host Materials and Lithium Polysulfides for Advanced Lithium-Sulfur Batteries, J. Electrochem. Soc., 162, A2567-A2576.  DOI: 10.1149/2.0171514jes.

  • Quan Pang, Juntao Tang, He Huang, Xiao Liang, Connor Hart, K. C. Tam*, and L.F. Nazar*, 2015, N and S dual-doped carbon with tunable hierarchical nanoporosity derived from polyrhodanine@cellulose for high-performance lithium-sulphur batteries. Adv. Mater, 27, 6021-6028.  DOI: 10.1002/adma.201502467.

  • E. Talaie, V. Duffort, H. Smith, B. Fultz, L.F. Nazar*, 2015, Structure of the High Voltage Phase of Layered P2-Nax[Mn1/2Fe1/2]O2 and the Positive Effect of Ni Substitution on its Stability, Energy Environ. Sci, 8,2512-2523. DOI: 10.1039/C5EE01365H. 

  • Y. Rangom, X.W. Tang* and L.F Nazar*, 2015, Carbon Nanotube-Based Supercapacitors with Excellent AC-Line Filtering and Rate Capability via Improved Interfacial Impedance, ACS Nano, 9, 7248-7255.  DOI: 10.1021/acsnano.5b02075.

  • D. Kundu, R. Black, K. Harrison, K. Zavadil, and L.F. Nazar*, 2015, Nanostructured Metal Carbides for Aprotic Li-O2 Batteries: New Insights into Interfacial Reactions and Cathode Stability, J. Phys. Chem. Lett. 6, 2252 - 2258.  DOI: 10.1021/acs.jpclett.5b00721.  

  • Chun Xia, B. Adams and L.F. Nazar*, 2015, The Critical Role of Phase-Transfer Catalysis in Aprotic Sodium Oxygen Batteries, Nature Chemistry, 7, 496-501.  DOI: 10.1038/nchem.2260

  • V. Duffort, E. Talaie, L.F. Nazar*, 2015, Uptake of CO2 in Layered P2-Na0.67[Mn0.5Fe0.5]O2: Insertion of Carbonate Anions, Chem Mater, 27, 2515–2524. DOI:  10.1021/acs.chemmater.5b00097.

  • S. H. Oh, B. Adams, B. Lee, and L.F. Nazar*, 2015, A Direct, Soft Chemical Route to Mesoporous Metallic Lead Ruthenium Pyrochlore and Exploration of its Electrochemical Properties, Chem. Mater, 27, 2322–2331. DOI:  10.1021/cm5034904.

  • Xiao Liang, A. Garsuch and L. F. Nazar*, 2015, Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium-Sulfur BatteriesAngewandte Chemie, 54, 3907 - 3911. 

  • H.W. Park, , D. U. Lee; M. G. Park; R. Ahmed; M. H. Seo; L. F. Nazar*; Z. Chen*, 2015, Perovskite-Nitrogen-Doped Carbon Nanotube Composite as Bifunctional Catalysts for Rechargeable Lithium-Air Batteries, ChemSusChem, 8, 1058-1065.

  • D. Kundu, M. Makahnouk, R. Tripathi and L.F. Nazar*, 2015, Synthesis, Crystal Structure and Na-ion migration in Na4NiP2O7F2 : a New, Prospective High Voltage Cathode for the Na-ion Battery, Chem. Mater. 27, 885 - 891.DOI:10.1021/cm504058k.

  • C. Hart, M. Cuisinier, A. Garsuch, and L.F. Nazar*, 2015, Rational design of sulphur host materials for Li-S batteries: Correlating lithium polysulphide adsorptivity and self-discharge capacity loss, Chem. Commun., 51, 2308 -2311. DOI: 10.1039/C4CC08980D. 

  • M. Cuisinier, C. Hart, Mali Balasubramanian, Arnd Garsuch, L.F. Nazar*, 2015, Radical or not Radical: Revisiting Lithium-Sulfur Electrochemistry in Non-Aqueous Electrolytes, special issue of Advanced Energy Materials, 5, 1401801- 1401810.DOI:10.1002/aenm.201401801.   

  • Xiao Liang, Connor Hart, Quan Pang, A. Garsuch, T. Weiss, and L. F. Nazar*, 2015, A Highly Efficient Polysulfide Mediator for Lithium Sulfur Batteries, Nature Commun, 6: 5682- 5688. DOI: 10.1038/ncomms6682

  • B. Adams, R. Black, Z. Williams, R. Fernandes, M. Cuisinier, E. J. Berg, P. Novak, G. Murphy and L.F. Nazar*, 2015, Towards a Stable Electrolyte for the Lithium Oxygen Battery, Advanced Energy Materials, 5,1400867, DOI: 10.1002/aenm.201400867.

  • D. Kundu, E. Talaie, V. Duffort,and L.F. Nazar*, 2015,Below Lithium Ion: The Emerging Chemistry of Sodium-ion Batteries for Electrochemical Energy Storage, Angewandte Chemie, 54, 3431 - 3448.DOI: 10.1002/anie.201410376R1.

  • D. Kundu, R. Black, and L.F. Nazar*, 2015, A Highly Active Nanostructured Metallic Oxide Cathode for Aprotic Li-O2 Batteries, Energy Environ. Sci., 8, 1292 – 1298.  DOI: 10.1039/C4EE02587C.

Back to top.

2014

  • H.W. Park, D.U. Lee, P. Zamani, M.H. Seo, L.F. Nazar*, Z. Chen, 2014, Electrospun Porous Nanorod Perovskite Oxide/Nitrogen-Doped Graphene Composite as a Bi-functional Catalyst for Metal Air Batteries, Nano Energy, 10, 192–200.

  • B. Adams, R. Black, C. Radtke, L. Mehdi, N. Browning, and L. F. Nazar*, 2014, The Importance of Nanometric Passivating Films on Cathodes for Li-air Batteries, ACS Nano, 8, 12483–12493. DOI:10.1021/nn505337p.

  • S. Ganapathy, B.D. Adams, G. Stenou, K. Goubitz, L. F. Nazar* and M. Wagemaker*, 2014, The Nature of Li2O2 Oxidation in a Li-O2 Battery Revealed by Operando X-ray Diffraction, J. Am. Chem. Soc., 136, 16335–16344. DOI:10.1021/ja508794r

  • M. H. Safari, B. Adams and L.F. Nazar*, 2014, Kinetics of Oxygen Reduction in Aprotic Li-O2 Cells: A Model-Based Study, J. Phys. Chem. Lett, 2014, 5, 3486–3491. DOI: 10.1021/jz5018202.

  • Q. Pang, D. Kundu, M. Cuisinier and L.F. Nazar*, 2014, Surface-enhanced Redox Chemistry of Polysulphides on a Metallic and Polar Host for Lithium-Sulphur Batteries, Nature Commun, 5:4759 DOI: 10.1038/ncomms5759 (2014).

  • Marine Cuisinier, Pierre-Etienne Cabelguen, B. Adams, M. Balasubramanian, A. Garsuch, and L.F. Nazar*, 2014, Unique Behavior of Nonsolvents for Polysulphides in Lithium-Sulphur Batteries, Energy Environ. Sci, 7, 2697-2705.  DOI:  10.1039/c4ee00372a.

  • M.H. Cho, J. Trottie, C. Gagnon, P. Hovington, D. Clément, A. Vijh, C.-S. Kim, A. Guerfi, R. Black, L. Nazarand K. Zaghib*, 2014, The Effects of Moisture Contamination in the Aprotic Li-O2 Battery, J. Power Sources, 268, 565-574,  DOI: 10.1016/j.jpowsour.2014.05.148

  • Guang He, B. Mandlmeier, J. Schuster, L.F. Nazar* and T. Bein*, 2014, Bimodal mesoporous carbon nanofibers with high porosity: Freestanding and embedded in membranes for lithium-sulfur batteries, Chem. Mater, 26, 3879-3886,DOI:10.1021/cm403740r

  • X. Ji, G. He, C. Andrei, and L.F. Nazar*, 2014, Gentle Reduction of SBA-15 Silicato its Silicon Replica with Retention of Morphology, RSC Advances, 4, 22048-22052. DOI: 10.1039/c3ra46557h

  • G. He, C. Hart, X. Liang and L.F. Nazar*, 2014, Stable Cycling of a Scalable Graphene–Encapsulated Nanocomposite for Lithium-Sulfur Batteries, ACS Applied Materials and Interfaces, 6, 10917-10923. DOI:  10.1021/am500632b

  • L. F. Nazar*, M. Cuisinier, Q. Pang, 2014, Li-S Batteries, MRS Bulletin, 39, 436-442.

  • H.J Park, T. Song, R. Tripathi, S.K. Lee, L.F. Nazar*, and U. Paik*, 2014, Li2MnSiO4/carbon nanofiber cathode materials for Li-ion batteries, Ionics, 20, 1351-1359.

  • T. Song, H. Cheng, K. Town, H. Park, R. W. Black, S. Lee, W. I Park, Y. Huang, J. A. Rogers, L. F. Nazar* and U. Paik*, 2014, Electrochemical Properties of Si- Ge Heterostructures as an Anode Material for Lithium Ion Batteries, Adv. Funct. Mater, 24, 1458- 1464.  DOI: 10.1002/adfm.201302122

Back to top.

2013

  • Guang He, Scott Evers and L.F. Nazar*, 2013, Tailoring Porosity in Spherical NanoCarbon Spheres for Li-S Batteries, ACS Nano, 7, 10920-10930.DOI: 10.1021/nn404439r

  • H.W. Park, D.U. Lee, Y.Liu, J. Wu, L. F. Nazar and Z. Chen, 2013, Bi-functional N-doped CNT/Graphene Composite as Highly Active and Durable Electrocatalyst for Metal Air Battery Applications, J. Electrochem. Soc., 160, A2244-A2250.  DOI:10.1149/2.097311jes

  • Marine Cuisinier, S. Evers, Pierre-Etienne Cabelguen, Guang He, Trudy Bolin, M. Balasubramanian, A. Garsuch and L.F. Nazar*, 2013, Sulfur Speciation in Li-S Batteries Determined by Operando X-ray Absorption Spectroscopy, J. Phys Chem. Lett., 4, 3227-3232.

  • H.W. Park, D.U. Lee, Y.Liu, J. Wu, L. F. Nazar and Z. Chen, 2013, Highly Active Graphene Nanosheets Prepared via Extremely Rapid Heating as Efficient Zinc-Air Battery Electrode Material, J. Electrochem. Soc., 160, F910-915.  DOI:  10.1149/2.016309jes

  • R. Tripathi, M.S. Islam and L.F. Nazar*, 2013, Na-ion mobility in Layered A2FePO4F and Olivine Na[Fe,Mn]PO4: Towards a Better Understanding of Na-ion Batteries, Energy Environ. Sci., 6, 2257 -2264. DOI:10.1039/C3EE40914G.

  • B. Adams, C. Radtke, R. Black, M. Trudeau, K. Zaghib and L.F. Nazar*, 2013, Current Density Dependence of Peroxide Formation in the Li-O2 Battery and its Effect on Charge, Energy Environ. Sci., 6, 1772.   DOI: 10.1039/c3ee40697k. 

  • M. Mazloumi, S. Shadmehr, Y. Rangom, L.F. Nazar and X. Tang*, 2013, Fabrication of Three-Dimensional Carbon Nanotube and Metal Oxide Hybrid Mesoporous Architectures, ACS Nano, 7, 4281.  DOI: 10.1021/nn400768p. 

  • G. He, G. Popov, L.F. Nazar*, 2013, Hydrothermal Synthesis and Electrochemical Properties of Li2CoSiO4/C Nanospheres, Chem Mater., 25, 1024-1031.   DOI: 10.1021/cm302823f

  • K.-H. Ha, S. H. Woo, R. Tripathi, D. Mok, N.-S. Choi, Y. Park, S. M. Oh, Y. Kim, J. Kim, L. F. Nazar*,, and K.T. Lee,*, 2013,  Na4-αM2+α/2(P2O7)2 (2/3 ≤ α ≤ 7/8) M=Fe, Fe0.5Mn0.5, Mn): A Promising Sodium Ion Cathode for Na-ion Batteries, 2013,  Adv. Energy Mater., 3, 689-692. DOI: 10.1002/aenm.201370023.

  • R. Tripathi, X.Q. Sun and L.F. Nazar*, 2013, Ultra-Rapid Microwave-Assisted Synthesis of Triplite LiFeSO4F, J. Mater. Chem. A, 1, 2990 - 2994.  DOI: 10.1039/c2ta01022d.

  • H.-W Park, D.-U. Lee, L. F. Nazar and Z. Chen*, 2013, Oxygen Reduction Reaction using MnO2 Nanotube/Nitrogen-doped Exfoliated Graphene Hybrid Catalyst for Li-O2 Batteries, J. Electrochem. Soc., 160, A344-A350.  

  • R. Black, Jin-Hyon Lee, B. Adams, C. Mims, and L.F. Nazar*, 2013, The Role of Catalysts and Peroxide Oxidation in Li-O2 Batteries, Angewandte Chemie, 52, 392 –396.  DOI:  10.1002/ange.201205354.

  • S Evers and L.F. Nazar*, 2013, New Approaches for High Energy Density Lithium-Sulfur Battery Cathodes, Accounts of Chemical Research, 46, 1135 -1149.  DOI: 10.1021/ar3001348.

Back to top.

2012

  • B. Ellis, K. Town and L.F. Nazar*, 2012, New Composite Materials for Li-ion Batteries, Electrochemica Acta, 84, 145– 154.  DOI:/10.1016/j.electacta.2012.04.113.

  • K.T. Lee, X. Ji, T. Yim and L.F. Nazar*, 2012, Surface-Initiated Growth of Thin Oxide Coatings for Li-Sulfur Battery Cathodes, Advanced Energy Materials, 2, 1490–1496, DOI:  10.1002/aenm.201200006.

  • S. H. Oh, R. Black, J.H Lee and L.F. Nazar*, 2012, Synthesis of Nano-Metallic/Porous Oxides as Catalysts for the Li-Air Battery, Nature Chem., 4, 1004 -1010.  DOI:  10.1038/nchem.1499.

  • T. Yim, S. Evers, L.F. Nazar*, 2012, Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li-S Battery, J. Phys. Chem C., 116, 19653-19658. DOI: 10.1021/jp304380j.

  • Jin-Hyon Lee, Robert Black, E. Pomerantseva, S.-H. Oh, G. Botton, F. Nan, and L. F. Nazar*, 2012, The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium-oxygen batteriess, Energy Environ. Sci., 5, 9558 - 9565.  DOI: 10.1039/c2ee21543h

  • N.-S. Choi, Z. Chen, S. A. Freunberger, G. Yushin, X. Ji, Y.-K. Sun, K. Amine, L. F. Nazar,  J. Cho , and P. G. Bruce, 2012, Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors, Angewandte Chemie, 51, 2 – 33.  DOI: 10.1002/anie.201201429.

  • B. Ellis and L.F. Nazar*, 2012, Reply to Comment on Positive Electrode Materials for Li-ion and Li-Batteries, Chem. Mater., 24, 2244-2245.  DOI:10.1021/cm301245q

  • S. H. Oh, and L.F. Nazar*, 2012, Oxide Catalysts for Rechargeable High Capacity Li-O2 Batteries, Advanced Energy Materials, 2, 903-910. 

  • R. Black, B. Adams, and L.F. Nazar*, 2012, Non-Aqueous and Hybrid Li-O2 Batteries, Advanced Energy Materials,2, 801-815.  DOI: 10.1002/aenm.201200001.

  • B.L. Ellis and L.F. Nazar*, Sodium and sodium-ion energy storage batteries, 2012, Current Opinions in Solid State and Materials Science, 16, 168–177

  • A. Kim, R. Black, Y-J. Hyun, L.F. Nazar, E. Prouzet*, 2012, Synthesis of meso-macro silica and carbon with tunable pore size, Chem. Comm, 48, 4335-4337.

  • B. Ellis, and L.F. Nazar*, 2012, Anion-Induced Solid Solution Behavior in Lithium Iron Phospho-Tavorites, Chem. Mater., 24, 966–968.

  • J. Schuster, G. He, T. Bein* and L.F. Nazar*, 2012, Spherical Ordered Mesoporous Carbon Nanoparticles for Stabilized Li-S Batteries, Angewandte Chemie, 51, 3591-3595.

  • R. Black, S. Oh, T. Yim, J.H. Lee, B. Adams, and L.F. Nazar*, 2012, Screening for Superoxide Reactivity in Li-O2 Batteries, J. Am. Chem. Soc., 134, 2902–2905.

  • B. Ellis, T.N. Ramesh, D. Ryan and L.F. Nazar*, 2012, Solvothermal synthesis of electroactive lithium iron tavorites and structure of Li2FePO4F, J. Mater Chem, 22, 4759 – 4766.

  • R. Tripathi, G. Popov, B. Ellis and L.F. Nazar*, 2012, Lithium Metal Fluorosulfate Polymorphs as Positive Electrodes for Li-ion Batteries: Synthesis Strategies and Effect of Cation Ordering, Energy Environ. Sci, 5, 6238 – 6246.

  • S. Evers and L.F. Nazar*, 2012, Graphene-Enveloped Sulfur in a One Pot Reaction: a Cathode with Good Coulombic Efficiency and High Practical Sulfur Content, Chem Comm.,48, 1233-1235.

Back to top.

2011

  • B. Ellis, T. N. Ramesh, L. J. M. Davis, G. Goward, L. F. Nazar*, 2011, Structure and Electrochemistry of Two-Electron Redox Couples in Lithium Metal Fluorophosphates Based on the Tavorite Structure, Chem. Mater., 23, 5138–5148.

  • H. Han, T.Song, J.Y. Bae, L.F. Nazar, H. Kim and U. Paik*, 2011, TiO2Hollow Nanofibers as an Anode Material for High Power Li-Ion Batteries, Energy Environ. Sci., 4, 4532-4536.

  • S. H. Oh, TaeEun Yim, E. Pomerantseva and L.F. Nazar*, 2011, Decomposition Reaction of Lithium Bis(oxalato)borate in the Rechargeable Lithium-Oxygen Cell, Electrochem. Solid-State Lett, 14, A185-A188.

  • L.J.M. Davis, B.L. Ellis, L.F. Nazar, A.D. Bain and G.R. Goward*, 2011, 6Li 1D EXSY NMR Spectroscopy: A New Tool for Studying Lithium Dynamics in Paramagnetic Materials Applied to Monoclinic Li2VPO4F, J. Phys Chem. C., 115, 22603-22608. 

  • K.T. Lee, T.N. Ramesh, H. Feihong, G. Botton and L.F. Nazar*, 2011, Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries, Chem. Mater., 23, 3593 -3600.

  • G. He., X. David Ji and L.F. Nazar*, 2011, High ‘C’ Rate Li-S Cathodes: Our Sulphur Imbibed Bimodal Porous Carbons, Energy and Environ. Sci.4, 2878 - 2883.

  • R. Tripathi, G. Gardiner, M.S. Islam* and L.F. Nazar*, 2011, Alkali-ion Conduction Paths in LiFeSO4F and NaFeSO4F Tavorite-Type Cathode Materials, Chem. Mater., 23, 2278-2284.

  • S. P. Badi, B. Ellis, M. Wagemaker* and L.F. Nazar*, 2011, Direct synthesis of nanocrystalline Li0.90FePO4: observation of phase segregation of anti-site defects on delithiation, J. Mater Chem., 21, 10085-10093.  Themed Issue on Advanced Battery Materials.

  • X. Ji, S. Evers, R. Black, and L.F. Nazar*, 2011, Stabilizing Lithium-Sulphur Cathodes Using Polysulphide Reservoirs, Nature Comm., 2, 325-331 (10.1038/ncomms1293).

  • G. He, J. Herbst, T.N. Ramesh, F.E Pinkerton, M.S. Meyer and L.F. Nazar*, 2011, Investigation of Hydrogen Uptake in Li7MnN4 and Li7VN4, Phys Chem Chem Phys, 13, 8889-8893. 

  • D. Rolison and L.F. Nazar, 2011, MRS Bulletin Guest Editorial for Special Issue on Energy Storage, 2011, “Electrical energy storage to power the 21st Century”; MRS Bulletin, 36, 486-493.

  • L.J.M. Davis, I. Heinmaa, B.L. Ellis, L.F. Nazar and G.R. Goward*, 2011, Influence of Particle Size on Solid Solution Formation and Phase Boundaries in Li0.5FePO4 using 31P and 6,7Li Solid State NMR Spectroscopy, Phys. Chem. Chem. Phys., 13, 5171-5177.

Back to top.

2010

  • R. Tripathi, T.N. Ramesh, B. Ellis and L.F. Nazar*, 2010, Scalable Synthesis of Tavorite LiFeSO4F and NaFeSO4F, Angewandte Chemie, 49, 8738-8742.

  • L. Cahill, Y. Iriyama, L.F. Nazar,* and G. Goward,* 2010, Synthesis and 6Li NMR Studies of Li4V(PO4)2F2, J. Mater. Chem., 20, 4340 -4346. 

  • H.K. Song, Kyu Tae Lee, M.G. Kim, L.F. Nazar* and J. Cho*, 2010, Nanostructured Materials for Li-ion Cathodes, Adv. Funct. Mater, 20, 3818-3834. 

  • Si Hyoung Oh and L.F. Nazar,* 2010, Direct synthesis of electroactive mesoporous hydrous crystalline RuO2 templated by a cationic surfactant, J. Mater. Chem., 20, 3834 – 3839.

  • X. Ji,  S. Evers and L.F. Nazar*, 2010, Agitation induced loading of sulfur into carbon CMK-3 nanotubes: efficient scavenging of noble metals from aqueous solution, Chem. Comm., 46, 1658 - 1660. 

  • T. N. Ramesh, K. T. Lee and L.F. Nazar*, 2010, Tavorite Lithium Iron Fluorophosphate Cathode Materials: Phase Transition and Electrochemistry of LiFePO4F-Li2FePO4F, Electrochem. Solid. Stat. Lett., 13, A47 – 53.

  • X. Ji,  and L.F. Nazar*, 2010, Advances in Li-S batteries,  J. Mater. Chem, 20, 9821-9826.

  • B. Ellis, D. H. Ryan, and L. F. Nazar*, 2010, Crystal Structure and Electrochemical Properties of A2MPO4F Fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni).  Chem. Mater., 22, 1059–1070.

  • B. Ellis, K. T. Lee, and L. F. Nazar*, 2010, Positive Electrode Materials for Li-Ion and Li Batteries. Chem. Mater., 22, 691–714.

  • X. Ji, K.T. Lee, R. Holden, L. Zhang, J. Zhang, and L.F. Nazar*, 2010,  Homogeneous Dispersion of Bimetallic Nanocatalysts Supported on Mesoporous Carbon for Direct Formic Acid Fuel Cells, Nature Chem., 2, 286-293.   

  • B. Ellis, M. Wagemaker, Fokko M. Mulder and L.F. Nazar*, 2010, Comment on “Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Impact on Structure and Properties”, Adv. Funct. Mater., 20, 186-188.

Back to top.

2009

  • K. T. Lee, David X. Ji, M. Rault, and L. F. Nazar*, 2009, Simple Synthesis of Graphitic Ordered Mesoporous Carbons via a Pseudo Solid State Method using Metal-Phthalocyanines,  Angewandte Chemie, Int. Ed., 48, 5217 - 5220.

  • K. T. Lee, W. H. Kan and L. F. Nazar*, 2009, Proof of Intercrystallite Ionic Transport in LiFePO4:  Battery-in-a-Battery Model, J. Am Chem. Soc., 131, 6044 -6045.

  • X. Ji, K.T. Lee and L.F. Nazar*, 2009, A Highly Ordered Nanostructured Carbon-Sulfur Cathode for Li-S Batteries, Nature Mater., 8, 500-506.

Back to top.

2008

  • M. Wagemaker*, B. Ellis, Dirk Lützenkirchen -Hecht, Fokko M. Mulder and L.F. Nazar*, 2008, Proof of Supervalent Doping in LiFePO4, Chem. Mater., 20, 6313-6315.

  • X. Ji, K.T. Lee and L.F. Nazar*, 2008, Strategic Synthesis of Mesoporous Silicate Nanorods, Chem. Comm, 36, 4288-4290 (featured on outer cover page, and cited as hot article).

  • L.F. Nazar* and Si Hyoung Oh, 2008,  The importance of nanotechnology in developing better energy storage materials for automotive transport.Invited Review.  Society of Automotive Engineers,  SP-2177 (Nanotechnology for Automotive Applications--Nanomaterials for Energy Devices),  13-21.

  • Y. Makimura, L. Cahill, Y. Iriyama, G. Goward and L.F. Nazar*, 2008, Layered Li5V(PO4)2F2, a 4 V class positive electrode material for lithium-ion batteries, Chem. Mater., 20, 4240-4248.

Back to top.

2007

  • B. Ellis, W.R.M. Makahnouk, Y. Makimura,  K. Toghill, and L.F. Nazar*, 2007, A New Multifunctional 3.5V Iron-Based Phosphate Cathode for Rechargeable Batteries,  Nature Mater., 6, 749-754.

  • M. Koltypin, D. Aurbach, L. Nazar and B. Ellis, 2007, More on the performance of LiFePO4 electrodes-The effect of synthesis route, solution composition, aging, and temperature, J. Power Sources, 174, 1241 – 1250.

  • B. Ellis, W.H. Kan, W.R.M. Makahnouk and L.F. Nazar*,2007,Synthesis of Nanocrystals and  Morphology Control of Hydrothermally Prepared LiFePO4, J. Mater. Chem., 17, 3248 – 3254.

  • Y.H. Rho and L.F. Nazar*, 2007, Surface Chemistry of LiFePO4 Studied by Mossbauer and XPS and its Effect on Electrochemical Properties, J. Electrochem. Soc., 154, A283-289.

  • D. Ji, Y.H. Rho and L.F. Nazar*, 2007,  A Carbon/MoO2 Nanocomposite Based on Porous Semi-Graphitized Nanorod Assemblies from In-Situ Reaction of Tri-Block Polymers, Chem. Mater, 19, 374 -383.

  • B. Ellis, P. Subramanya Herle, Y.H Rho and L.F. Nazar*, 2007, Nanostructured Materials for Lithium-Ion Batteries: Surface Conductivity vs Bulk Ion/Electron Transport, Faraday Discussions, 134, 119-128 (on the list of top 10 most cited articles in journal).

  • M. Koltypin, D. Aurbach*, B. Ellis and L.F. Nazar, 2007, Electrode-electrolyte solution interactions related to cathode materials for Li-ion batteries, J. Power Sources, 165, 491-499.

  • M. Koltypin, D. Aurbach*, B. Ellis and L.F. Nazar*, 2007, On the Stability of Olivine Cathodes, Electrochemical and Solid State Letters, 10, A40 – A44.

Back to top.

2006

  • B. Ellis, Laura K. Perry, D. H. Ryan and L.F. Nazar,* 2006,  Small Polaron Hopping in LixFePO4 Solid Solutions:  Coupled Lithium-Ion and Electron Mobility, J. Am. Chem. Soc., 128, 11416 - 11422.

  • S.C. Yin, I. Swainson, Y. H. Rho and L.F. Nazar*, 2006, Neutron Diffraction and Electrochemical Studies of Layered Lix[Co1/3Ni1/3Mn1/3]O2 Cathode Materials, Chem. Mater., 18, 1901-1910.

  • S.C. Yin, R. Edwards, N. Taylor, S. Herle and L.F. Nazar*, 2006, Dimensional Reduction:  A New Route to Lithium Vanadium Fluorophosphates, Chem. Mater., 18, 1745-1752.

  • R. Stevens, J.L. Dodd, M.G. Kresch, B. Fultz*, B. Ellis and L.F. Nazar*, 2006, Phonons and Thermodynamics of Unmixed and Disordered Li0.6FePO4, J. Phys. Chem. B., 110, 22732 -22735.

Back to top.

2005

  • L.S. Cahill, A. Samoson, S.C.Yin, L.F. Nazar,* G.R. Goward*, 2005, 6Li NMR Studies of Cation Disorder and Transition Metal Ordering in Li[Co1/3Ni1/3Mn1/3]O2 Using Ultra-fast Magic Angle Spinning, Chem. Mater., 17, 6560-6566.

  • S.C. Yin, I. Swainson, Y. H. Rho and L.F. Nazar*, 2005, Neutron Diffraction Studies of Layered Lithium Metal Oxide Materials, Solid State Ionics-2004 (MRS), 835, 112-118.

Back to top.

2004

  • O. Crosnier and L.F. Nazar*, 2004, Facile, highly reversible displacement reaction of Cu3P at low potential, Electrochemical and Solid State Letters, 7, A187-190.

  • S.C. Yin, H. Grondey, P. Strobel and L.F. Nazar*, 2004, Li2.5V2(PO4)3: A room temperature analog to the fast-ion conducting gamma phase, Chem. Mater., 16, 1456-1465.

  • S. Herle, B. Ellis and L.F. Nazar*, 2004, Nano-network Electronic Conduction in Iron and Nickel Olivine Phosphates, Nature Materials, 3, 147-152.

Back to top.

2003

  • O. Crosnier, S. Herle, N. J. Taylor and L.F. Nazar*, 2003, Crystal Structure and Electrochemical Behavior of Li2CuP:  a Surprising Reversible Crystalline-Amorphous Transformation, Chem. Mater.,15, 4890 - 4892.

  • S.C. Yin, P. Strobel, M. Anne and L.F. Nazar*, 2003, Structure-Property Relationships in Monoclinic Li3-yV2(PO4)3, J. Am. Chem. Soc., 125, 10402-10411.

  • J. Rowsell, and LF. Nazar*, 2003, Crystallographic Investigation of the Co-B-O System, J. Solid State Chemistry, 174,189 - 197.

  • D. C.S. Souza, O. Crosnier and L.F. Nazar*, 2003, Reversible Li Uptake in FeP2, Electrochem. Solid-State Lett., 6, A162 – A166.

  • S.C. Yin, H. Grondey, P. Strobel and L.F. Nazar*, 2003, Charge Ordering in Li3-xV2(PO4)3 phases, J. Am. Chem. Soc.,125, 326-327.

Back to top.

2002

  • H. Huang, S.C. Yin, T. Kerr and L.F. Nazar*, 2002, Nanostructured composites: A high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries, Adv. Mater, 10,1525-1528.

  • F. Leroux, P. Dewar, M. Intissar, G. Ouvrard* and L. F. Nazar*, 2002, Study of the Formation of Mesoporous Titania via a template approach and its subsequent Li Insertion, J. Mater. Chem., 12, 3245 - 3255.

  • T. Emons, J. Li and L.F. Nazar*, 2002, Mesoporous Indium-Tin Oxide: A Transparent Conducting Oxide Network, J. Am. Chem. Soc, 124, 8516-8517.

  • D.C. Souza, V. Pralong, and L.F. Nazar*, 2002, Reversible Room Temperature Solid State Transformation of Crystalline Metal Phosphides Induced by Redox Chemistry, Science, 296, 2012-2015.

  • V. Pralong, D.C. Souza, and L.F. Nazar*,2002,Reversible Lithium Uptake by CoP3 at Low Potential: Role of the Anion, Electrochemistry Communications, 4, 516-520.

  • J. Rowsell, and L.F. Nazar*, 2002, Structure and Ion Exchange Properties of a New Cobalt Borate with a Tunnel Structure "Templated" by Na+, J. Am. Chem. Soc, 124, 6522- 6524.

  • L. Jones*, C. May, L. Nazar and T. Simpson, 2002,  In-vitro evaluation of the dehydration characteristics of silicone hydrogels, Contact Lens & Anterior Eye, 15, 1-10.

Back to top.

2001

  • Huang, S-C. Yin, and L.F. Nazar*, 2001, Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates, Electrochem. Solid State Lett., 4, A170- A174.

  • J. Rowsell, V. Pralong and L.F. Nazar*, 2001, Layered Lithium Iron Nitride:  A Promising Anode for Li-Ion Batteries, J. Am. Chem. Soc., 123, 8598-8600.

  • H. Huang and L.F. Nazar*, 2001, Grafted Metal Oxide/Polymer/Carbon Nanostructures, Angewandte Chemie, Intl. Ed. 40, 3880-3884. .

  • L. Nazar*, 2001, Nanostructured Materials for Energy Storage, Intl. J. Inorg. Materials, 3, 191.

  • J. Rowsell and L.F. Nazar*, 2001, Synthesis and Structure of Cr3BO6: A New Chromium Borate of the Norbergite Family, J. Mater. Chem., 11, 1-8.

  • G. Goward, D. Souza, N. Taylor and L.F. Nazar*, 2001, The Structure of Li17M4 (M = Ge, Sn, Pb), J. Alloys and Compounds, 329, 82.

Back to top.

2000

  • J. Li and L. F. Nazar*, 2000, Mesostructured Iron Sulfides, J. Chem. Soc., Chem. Comm., 1749-1751.

  • T. Kerr J. Gaubicher, and L F. Nazar*, 2000, Highly Reversible Li Insertion at 4V in ε-VOPO4/α-LiVOPO4 Cathodes, Electrochem. Solid-State Lett., 3, 460-464.

  • J. Rowsell, J. Gaubicher, and L. F. Nazar*, 2000, A New Class of Materials for Lithium-Ion Batteries:  Iron (III) Borates, J. Power Sources, 98-98, 254-258.

  • J. Gaubicher, G. Goward, C. Wurm, C. Masquelier, and L. F. Nazar*, 2000, The Rhombohedral Form of Li3V2(PO4)3 as a Cathode in Li-ion Batteries, Chem. Mater, 12, 3240-3243.

  • J. Rowsell and L. F. Nazar*, 2000, Speciation and Thermal Transformation in Alumina Sols:  Structures of the δ-Polyhydroxyoxyaluminum Dimeric Cluster [Al30O8(OH)56(H2O)26]18+ and its δ-Keggin Moitie, J. Am. Chem. Soc., 122, 3777-3778.

  • G. R.Goward, L. F. Nazar* and W. P.Power*, 2000, Electrochemical and Multinuclear Solid-State NMR Studies of Tin Composite Oxide Glasses as Anodes for Li Ion Batteries, J. Mater. Chem., 10, 1241-1249.

  • C. Masquelier,* C. Wurm, J. Rodriguez-Carvajal, J. Gaubicher and L. Nazar, 2000, A Powder Neutron Diffraction Investigation of the Two Rhombohedral NASICON analogs: γ-Na3(Fe2(PO4)3 and Li3Fe2(PO4)3; Chem. Mater., 12, 525-532. 

  • F. Leroux, and L. F. Nazar*, 2000, Uptake of Lithium by Layered NaxMoO3 and its Sn-Exchanged Derivatives:High Volumetric Capacity Materials; Solid State Ionics, 133, 37-50.

  • F. Leroux and L.F. Nazar*, 2000, The Role of Oxygen in Low-Potential Li Insertion in Metal Oxide Anode Materials, Mat. Res. Soc. Symp. Proc, New Materials for Batteries and Fuel Cells, II, 55, 173-179.

Back to top.