Publications

Prof. Linda F. Nazar

Department of Chemistry
University of Waterloo
200 University Avenue West
Waterloo, Ontario, N2L 3G1 Canada

Tel: (519) 888-4637
Fax: (519) 746-0435

Email: lfnazar@uwaterloo.ca

Web of Science Highly Cited Researchers 2018; Clarivate Analytics
The World Technology Network Award Finalist 2018

Publications by year

For a complete listing of publications, visit Linda Nazar's Google Scholar profile or her Dimensions profile.


2025

  • M. Palmer, L. Qian, V. Singh, L. Merola, E. Carlson, C. Haslam, J. Janek, L.F. Nazar, J. Sakamoto*, 2025. Contact mechanics and electrochemical properties of the Li6.5La3Zr1.5Ta0.5O12| Li2.25Zr0.75Fe0.25Cl6 hetero-electrolyte interface in a low-pressure regime. Solid State Ionics, 428, 116948. DOI: 10.1016/j.ssi.2025.116948
  • V. Singh, J. Schuler, T. Ortmann, M. Ziegler, J. Janek, L.F. Nazar*, 2025. High Coulombic Efficiency Plating and Stripping of Sodium for Reservoir-Free Sodium Solid-State Batteries at Low Stack Pressure. ACS Energy Lett., 10, 3663–3669. DOI: 10.1021/acsenergylett.5c01680
  • K. Hatzell, L.F. Nazar, 2025. Recent Advances in Solid-State Batteries. ACS Energy Lett., 10, 2315–2317. DOI: 10.1021/acsenergylett.5c01015; J. Am. Chem. Soc., 147, 14881–14883. DOI: 10.1021/jacs.5c06058.
  • Z. Yu, B. Singh, Y. Yu, L.F. Nazar*, 2025. Suppressing argyrodite oxidation by tuning the host structure for high-areal-capacity all-solid-state lithium–sulfur batteries. Nature Mater., 24, 1082–1090. DOI: 10.1038/s41563-025-02238-2
  • L. Zhou, L.F. Nazar*, 2025. Vacancy Driven Fast Ion Conduction in Lithium Deficient Magnesium Chloride Spinel. ACS Materials Letters, 7, 2482–2488. DOI: 10.1021/acsmaterialslett.4c02525
  • C. Glaser, M. Sotoudeh, M. Dillenz, K. Sarkar, J. Bark, S. Singh, Z. Wei, S. Indris, R. Müller, K. Leopold, L.F. Nazar, A. Groß, J. Janek*, 2025. High Room-Temperature Magnesium Ion Conductivity in Spinel-Type MgYb2Se4 Solid Electrolyte. Chem. Mater., 37, 3353−3362. DOI: 10.1021/acs.chemmater.5c00131

2024

  • C. Li, R. D. Guha, S. House, D. Bazak, Y. Yu, L. Zhou, K. Zavadil, K. Persson, L.F. Nazar*, 2024. A dynamically bare metal interface enables reversible magnesium electrodeposition at 50 mAh cm−2. Joule, 9, 101790. DOI: 10.1016/j.joule.2024.11.007
  • I. You, B. Singh, M. Cui, G. Goward, L. Qian, Y. Wang, Z. Arthur, G. King, L.F. Nazar*, 2024. A facile route to plastic inorganic electrolytes for all-solid state batteries based on molecular design. Energy Environ. Sci., 18, 478491. DOI: 10.1039/D4EE03944K
  • L. Qian, Y. Huang, C. Dean, I. Kochetkov, B. Singh, L.F. Nazar*, 2024. Engineering Stable Decomposition Products on Cathode Surfaces to Enable High Voltage All-Solid-State Batteries. Angewandte Chemie Int. Ed., 64, e202413591. DOI: 10.1002/anie.202413591
  • Y. Wang, J. D. Bazak, L Zhou, Q. Zhang, B. Singh, L.F. Nazar*, 2024. Liquid-like solid-state diffusion of lithium ions in super-halide-rich argyrodite. Cell Rep. Phys. Sci.,5, 102314. DOI: 10.1016/j.xcrp.2024.102314
  • L. Merola, V.K. Singh, M. Palmer, J.K. Eckhardt, S.L. Benz, T. Fuchs, L.F. Nazar, J. Sakamoto, F.H. Richter, J. Janek*, 2024. Evaluation of Oxide|Sulfide Heteroionic Interface Stability for Developing Solid-State Batteries with a Lithium–Metal Electrode: The Case of LLZO|Li6PS5Cl and LLZO|Li7P3S11. ACS AMI, 16, 54847–548663. DOI: 10.1021/acsami.4c11597
  • T. Fuchs, T. Ortmann, J. Becker, C. G. Haslam, M. Ziegler, V. Singh, M. Rohnke, B. Mogwitz, K. Peppler, L.F. Nazar, J. Sakamoto, J. Janek*, 2024. Imaging the microstructure of lithium and sodium metal in anode-free solid-state batteries using electron backscatter diffraction. Nature Mater. 23, 1678–1685. DOI: 10.1038/s41563-024-02006-8
  • L. Zhou, D. Bazak, C. Li, L.F. Nazar*, 2024. 4 V Na Solid State Batteries Enabled by a Scalable Sodium Metal Oxyhalide Solid Electrolyte. ACS Energy Lett., 9, 4093–4101. DOI: 10.1021/acsenergylett.4c01855
  • L. Qian, B. Singh, Z. Yu, N. Chen, G. King, Z. Arthur, L.F. Nazar*, 2024. Unlocking lithium ion conduction in lithium metal fluorides. Matter, 7, 3587–3607. DOI: 10.1016/j.matt.2024.06.027
  • B. Singh, Y. Wang, J. Liu, J.D. Bazak, A. Shyamsunder, L.F. Nazar*, 2024. Critical Role of Framework Flexibility and Disorder in Driving High Ionic Conductivity in LiNbOCl4J. Am. Chem. Soc., 146, 17158–17169. DOI: 10.1021/jacs.4c03142
  • Y. Yu, B. Singh, Z. Yu, C.Y. Kwok, I. Kochetkov, L.F. Nazar*, 2024. A Nanocrystallite CuS/Nitrogen-Doped Carbon Host Improves Redox Kinetics in All-Solid-State Li2S Batteries. Adv. Energy Mater., 14, 2400845. DOI: 10.1002/aenm.202400845
  • Z. Wei*, L.F. Nazar*, J. Janek*, 2024. Emerging Halide Solid Electrolytes for Sodium Solid-State Batteries: Structure, Conductivity, Paradigm of Applications. Batteries and Supercaps7, e202400005. DOI: 10.1002/batt.202400005 
  • X. Ji, L.F. Nazar, 2024. Best practices for zinc metal batteries. Nature Sustainability, 7, 98–99. DOI: 10.1038/s41893-023-01257-8 
  • C. Li, R. D. Guha, A. Shyamsunder, K.A. Persson*, L.F. Nazar*, 2024. A weakly ion pairing electrolyte designed for high voltage magnesium batteries. Energy Environ. Sci., 17, 190–201. DOI: 10.1039/D3EE02861E 

2023

  • Y. Huang, L. Zhou, C. Li, Z. Yu, L.F. Nazar*, 2023. Waxing Bare High-Voltage Cathode Surfaces to Enable Sulfide Solid-State Batteries. ACS Energy Lett., 8, 49494956. DOI: 10.1021/acsenergylett.3c01717

  • C. Li, A. Shyamsunder, B. Key, Z. Yu, L.F Nazar*, 2023. Stabilizing magnesium plating by a low-cost inorganic surface membrane for high-voltage and high-power Mg batteries. Joule, 7, 27982813. DOI: 10.1016/j.joule.2023.10.012 

  • A. Shyamsunder, M. Palmer, I. Kochetkov, J. Sakamoto*, L.F. Nazar*, 2023. Surface Chemistry of LLZO Garnet Electrolytes with Sulfur in Electron Pair Donor Solvents. ACS AMI, 15, 52571–52580. DOI: 10.1021/acsami.3c12278

  • L. Zhou, J. D. Bazak, B. Singh, C. Li, A. Assoud, N.M. Washton, V. Murugesan, L.F. Nazar*, 2023. A New Sodium Thioborate Fast Ion Conductor: Na3B5S9Angewandte Chemie, 62, e2023004. DOI: 10.1002/anie.202300404 

  • L. Zhou, T.T. Zuo, C. Li, Q. Zhang, J. Janek, L.F. Nazar*, 2023. Li3–xZrx(Ho/Lu)1–xCl6 Solid Electrolytes Enable Ultrahigh-Loading Solid-State Batteries with a Prelithiated Si Anode. ACS Energy Lett., 8, 31023111. DOI: 10.1021/acsenergylett.3c00763

  • C. Li, R. Kingsbury, A. Thind, A. Shyamsunder, T. Fister, R. Klie, K. Persson, L.F. Nazar*, 2023. Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries. Nature Commun.,14, 30673077. DOI: 10.1038/s41467-023-38460-2

  • C.Y. Kwok, S. Xu, I. Kochetkov, L. Zhou, L.F. Nazar*, 2023. High-performance all-solid-state Li2S batteries using an interfacial redox mediator. Energy Environ. Sci., 16, 610618. DOI: 10.1039/D2EE03297J

  • E.P. Ramos, A. Assoud, L. Zhou, A. Shyamsunder, D. Rettenwander, L.F. Nazar*, 2023. Structure–transport correlations in Na11Sn2SbSe12 and its sulfide solid solutions. APL Mater., 11, 011104. DOI: 10.1063/5.0129001

2022

  • E.P. Ramos, N. Kim, A. Assoud, I. Kotchetkov, L. Wan, L.F. Nazar*, 2022. Triggering Fast Lithium Ion Conduction in Li4PS4I. ACS Mater. Lett., 5, 144154. DOI: 10.1021/acsmaterialslett.2c00821

  • L. Blanc, Y.Y. Choi, A. Shysamsunder, B. Key, S. Lapidus, C. Li, L. Yin, X. Li, B. Gwalani, Y. Xiao, C. Bartel, G. Ceder*, L.F. Nazar*, 2022. Phase Stability and Kinetics of Topotactic Dual Ca2+–Na+ Ion Electrochemistry in NaSICON NaV2(PO4)3. Chem. Mater., 35, 468–481. DOI: 10.1021/acs.chemmater.2c02816

  • T.-T. Zuo, F. Walther, J. H. Teo, R. Ruess, Y. Wang, M. Rohnke, D. Schroeder, L.F. Nazar, J. Janek*, 2022. Impact of the Chlorination of Lithium Argyrodites on the Electrolyte/Cathode Interface in Solid-State Batteries. Angewandte Chemie, 62, e202213228. DOI: 10.1002/anie.202213228

  • E.P. Ramos, J.D. Bazak, A. Assoud, A. Huq, G. Goward*, L.F. Nazar*, 2022. Structure of the Solid-State Electrolyte Li3+2xP1-xAlxS4: Lithium-Ion Transport Properties in Crystalline vs Glassy phases. ACS AMI, 14, 56767–56779. DOI: 10.1021/acsami.2c16776

  • L. Zhou, Q. Zhang, L.F. Nazar*, 2022. Li-Rich and Halide-Deficient Argyrodite Fast Ion Conductors. Chem. Mater., 34, 9634–9643. DOI: 10.1021/acs.chemmater.2c02343

  • I. Kochetkov, T.-T. Zuo, R. Ruess, B. Singh, L. Zhou, K. Kaup, J. Janek*, L.F. Nazar*, 2022. Different interfacial reactivity of lithium metal chloride electrolytes with high voltage cathodes determines solid-state battery performance. Energy Environ. Sci., 15, 39333944. DOI: 10.1039/D2EE00803C

  • L. Zhou, T.-T. Zuo, C.Y. Kwok, S.Y. Kim, A. Assoud, Q. Zhang, J. Janek, L.F. Nazar*, 2022. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nature Energy, 7, 83–93. DOI: 10.1038/s41560-021-00952-0

  • Q. Pang, J. Meng, S. Gupta, X. Hong, C.Y. Kwok, J. Zhao, Y. Jin, L. Xu, Ö. Karahan, Z. Wang, S. Toll, L. Mai, L.F. Nazar, M. Balasubramanian, B. Narayanan, D.R. Sadoway*, 2022. Fast-charging aluminium–chalcogen batteries resistant to dendritic shorting. Nature, 608, 704-711. DOI: 10.1038/s41586-022-04983-9

  • C. Bauer, L.F. Nazar et al., 2022. Charging sustainable batteries. Nature Sustainability, 5, 176178. DOI: 10.1038/s41893-022-00864-1

  • C. Li, S. Jin, L.A. Archer, L.F. Nazar*, 2022. Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule, 6, 17331738. DOI: 10.1016/j.joule.2022.06.002

  • C. Li, A. Shyamsunder, A.G. Hoane, D.M. Long, C.Y. Kwok, P. Kotula, K. Zavadil, A. Gewirth*, L.F. Nazar*, 2022. Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule, 6, 11031120. DOI: 10.1016/j.joule.2022.04.017

  • C. Li, R. Kingsbury, L. Zhou, A. Shyamsunder, K. Persson, L.F. Nazar*, 2022. Tuning the Solvation Structure in Aqueous Zinc Batteries to Maximize Zn-Ion Intercalation and Optimize Dendrite-Free Zinc Plating. ACS Energy Lett., 7, 533540. DOI: 10.1021/acsenergylett.1c02514

  • Z. Zhang, L.F. Nazar*, 2022. Exploiting the paddle-wheel mechanism for the design of fast ion conductors (invited). Nature Rev. Mater., 7, 389405. DOI: 10.1038/s41578-021-00401-0

2021

  • D.J. Siegel, L.F. Nazar, Y.-M. Chiang, C. Fang, N.P. Balsara*, 2021. Establishing a unified framework for ion solvation and transport in liquid and solid electrolytes. Trends in Chemistry, 3, 807–818. DOI: 10.1016/j.trechm.2021.06.004
  • F. Wang, L.E. Blanc, Q. Li, A. Faraone, X. Ji, H.H. Chen-Mayer, R. Paul, J.A. Dura, E. Hu, K. Xu*, L.F. Nazar*, C. Wang*, 2021. Quantifying and Suppressing Proton Intercalation to Enable High-Voltage Zn-Ion Batteries. Adv. Energ. Mater., 11, 2102016–2102027. DOI: 10.1002/aenm.202102016
  • L. Blanc, C. Bartel, H. Kim, Y. Tian, H. Kim, A. Miura, G. Ceder*, L.F. Nazar*, 2021. Toward the Development of a High-Voltage Mg Cathode Using a Chromium Sulfide Host. ACS Mater. Lett., 3, 12131220. DOI: 10.1021/acsmaterialslett.1c00308
  • L. Pokrajac, L.F. Nazar, S. Mitra et al., 2021. Nanotechnology for a Sustainable Future: Addressing Global Challenges with the International Network4Sustainable Nanotechnology. ACS Nano, 15, 1860818623. DOI: 10.1021/acsnano.1c10919
  • I. Abate, C.D. Pemmaraju, S.Y. Kim, K.H. Hsu, S. Sainio, B. Moritz, J. Vinson, M.F. Toney, W. Yang, W.E. Gent, T.P. Devereaux*, L.F. Nazar*, W. Chueh*, 2021. Coulombically-stabilized oxygen hole polarons enable fully reversible oxygen redox. Energy Environ. Sci., 14, 48584867. DOI: 10.1039/D1EE01037A
  • L. Zhou, N. Minafra, W. Zeier*, L.F. Nazar*, 2021. Innovative approaches to Argyrodite solid electrolytes for all-solid-state batteries (invited). Acc. Chem. Res., 54, 27172728. DOI: 10.1021/acs.accounts.0c00874.
  • S.Y. Kim, K. Kaup, K.-H. Park, A. Assoud, L. Zhou, J. Liu, X. Wu, and L.F. Nazar*, 2021. Lithium Ytterbium-Based Halide Solid Electrolytes for High Voltage All-Solid-State Batteries. ACS Mater. Lett., 3, 930938. DOI: 10.1021/acsmaterialslett.1c00142
  • S.Y. Kim, C. Park, S. Hosseini, J. Lampert, Y.J. Kim, L.F. Nazar*, 2021. Inhibiting Oxygen Release from Li-rich, Mn-rich Layered Oxides at the Surface with a Solution Processable Oxygen Scavenger Polymer. Adv. Energy. Mater., 11, 21005522100563. DOI: 10.1002/aenm.202100552
  • K. Kaup, K. Bishop, A. Assoud, J. Liu, L.F. Nazar*, 2021. Fast Ion-Conducting Thioboracite with a Perovskite Topology and Argyrodite-like Lithium Substructure. J. Am. Chem. Soc., 143, 69526961. DOI: 10.1021/jacs.1c00941
  • M.A. Philip, R.T. Haasch, J. Kim, J. Yang, R. Yang, I. Kochetkov, L.F. Nazar, A. Gewirth*, 2021. Enabling High Capacity and Coulombic Efficiency for Li-NCM811 Cells Using a Highly Concentrated Electrolyte. Batteries & Supercaps, 4, 294–303. DOI: 10.1002/batt.202000192
  • I. Abate, S.Y. Kim, C.D. Pemmaraju, M.F. Toney, W. Yang, T.P. Devereux, W.C. Chueh*, L.F. Nazar*, 2021. The Role of Metal Substitution in Tuning Anion Redox in Sodium Metal Layered Oxides Revealed by X-Ray Spectroscopy and Theory. Angewandte Chemie Int. Ed., 60, 1088010887. DOI: 10.1002/anie.202012205
  • P. Adeli, J.D. Bazak, A. Huq, G. Goward*, L.F. Nazar*, 2021. Influence of Aliovalent Cation Substitution and Mechanical Compression on Li-Ion Conductivity and Diffusivity in Argyrodite Solid Electrolytes. Chem. Mater., 33, 146157. DOI: 10.1021/acs.chemmater.0c03090
  • K. Kaup, A. Assoud, J. Liu, L.F. Nazar*, 2021. Fast Li-Ion Conductivity in Superadamantanoid Lithium Thioborate Halides. Angewandte Chemie Int. Ed., 60, 69756980. DOI: 10.1002/anie.202013339

Back to top.

2020

  • S. Xu, C.Y. Kwok, L. Zhou, Z. Zhang, I. Kochetkov, L.F. Nazar*, 2020. A High Capacity All Solid-State Li-Sulfur Battery Enabled by Conversion-Intercalation Hybrid Cathode Architecture. Adv. Funct. Mater., 31, 2004239. DOI: 10.1002/adfm.202004239
  • L. Zhou, C.Y. Kwok, A. Shyamsunder, Q. Zhang, X. Wu, L.F. Nazar*, 2020. A new halospinel superionic conductor for high-voltage all solid state lithium batteries. Energy Environ. Sci., 13, 20562063. DOI: 10.1039/D0EE01017K.

  • S. Kim, L. Yin, M.H. Lee, P. Parajuli, L.E. Blanc, T. Fister, H. Park, B.J. Kwon, B.J. Ingram, P. Zapol, R.F. Klie, K. Kang, L.F. Nazar*, S.H. Lapidus, J.T. Vaughey*, 2020. High-Voltage Phosphate Cathodes for Rechargeable Ca-Ion Batteries. ACS Energy Lett., 5, 3203–3211. DOI: 10.1021/acsenergylett.0c01663

  • Z. Zhang, H. Li, K. Kaup, L. Zhou, P-N. Roy, L.F. Nazar*, 2020. Targeting Superionic Conductivity by Turning on Anion Rotation at Room Temperature in Fast Ion Conductors. Matter, 2, 16671684. DOI: 10.1016/j.matt.2020.04.027

  • L. Blanc, D. Kundu, L.F. Nazar*, 2020. Scientific Challenges for the Implementation of Zn-Ion Batteries. Joule, 4, 771799. DOI:10.1016/j.joule.2020.03.002

  • W.E. Gent*, I.I. Abate, W. Yang, L.F. Nazar, W. Chueh, 2020. Design Rules for High-Valent Redox in Intercalation Electrodes. Joule, 4, 13691397. DOI: 10.1016/j.joule.2020.05.004

  • R. Wang, J. Yu, J. Tang, R. Meng, L.F. Nazar, L. Huang, X. Liang*, 2020. Insights into dendrite suppression by alloys and the fabrication of a flexible alloy-polymer protected lithium metal anode. Energy Storage Materials, 32, 178184. DOI: 10.1016/j.ensm.2020.07.039

  • L. Trahey, F.R. Brushett, N.P. Balsara, G. Ceder, L. Cheng, Y.-M. Chiang, N.T. Hahn, B.J. Ingram, S.D. Minteer, J.S. Moore, K.T. Mueller, L.F. Nazar, K.A. Persson, D.J. Siegel, K. Xu, K.R. Zavadil, V. Srinivasan, G.W. Crabtree, 2020. Energy storage emerging: A perspective from the Joint Center for Energy Storage Research. Proc. Nat. Acad. Sci., 117, 1255012557. DOI: 10.1073/pnas.1821672117

  • K. Kaup, L. Zhou, A. Huq, L.F. Nazar*, 2020. Impact of the Li substructure on the diffusion pathways in alpha and beta Li3PS4: an in situ high temperature neutron diffraction study. J. Mater. Chem. A, 8, 1244612456. DOI: 10.1039/D0TA02805C

  • F. Makhlooghiazad*, M. Sharma, Z. Zhang, P. Howlett, M. Forsyth, L.F. Nazar*, 2020. Stable High-Temperature Cycling of Na Metal Batteries on Na3V2(PO4)3 and Na2FeP2O7 Cathodes in NaFSI-Rich Organic Ionic Plastic Crystal Electrolytes. J. Phys. Chem. Lett., 11, 20922210. DOI: 10.1021/acs.jpclett.0c00149

  • L. Blanc, X. Sun, A. Shyamsunder, V. Duffort, L.F. Nazar*, 2020. Direct Nano-Synthesis Methods Notably Benefit Mg-Battery Cathode Performance. Small Methods, 4, 2000029. DOI: 10.1002/smtd.202000029

  • W.-J. Kwak, Rosy, D. Sharon, C. Xia, H. Kim, L.R. Johnson, P. Bruce, L.F Nazar*, Y.-K. Sun*, A. Frimer, M. Noked, S. Freunberger, D. Aurbach*, 2020. Lithium–Oxygen Batteries and Related Systems: Potential, Status, and Future. Chem. Rev., 120, 66266683. DOI: 10.1021/acs.chemrev.9b00609

  • K.-H. Park, K. Kaup, A. Assoud, Q. Zhang, X. Wu, L.F. Nazar*, 2020. High-Voltage Superionic Halide Solid Electrolytes for All-Solid-State Li-Ion Batteries. ACS Energy Lett., 5, 533539. DOI: 10.1021/acsenergylett.9b02599

  • K. Kaup, J.D. Bazak, S.H. Vajargah, X. Wu, J. Kulisch, G. Goward, L.F. Nazar*, 2020. A Lithium Oxythioborosilicate Solid Electrolyte Glass with Superionic Conductivity. Adv. Energy Mater, 10, 1902783. DOI:  10.1002/aenm.201902783

Back to top.

2019

  • P.V. Kamat, L.F.J. Piper, A. Manthiram, S. Okada, M.S. Islam, Y.S. Meng, X. Li, B.D. McCloskey, Y.-K. Sun, L.F. Nazar, S. Banerjee, 2019. Energy Spotlight: Personal Reflections of Energy Researchers on the 2019 Chemistry Nobel Laureates. ACS Energy Lett., 4, 2763–2769. DOI: 10.1021/acsenergylett.9b02290

  • L. Pokrajac, L.F. Nazar, Z. Chen, S. Mitra*, 2019. The Waterloo Institute for Nanotechnology: Societal Impact and a Sustainable Future. ACS Nano, 13, 12247–12253. DOI: 10.1021/acsnano.9b08356

  • Z. Zhang, P-N. Roy, H. Li, M. Avdeev, L.F. Nazar*, 2019. Coupled Cation–Anion Dynamics Enhances Cation Mobility in Room-Temperature Superionic Solid-State Electrolytes. J. Am. Chem. Soc., 141, 1936019372. DOI:  10.1021/jacs.9b09343

  • L. Zhou, A. Assoud, Q. Zhang, X. Wu, L.F. Nazar*, 2019. New Family of Argyrodite Thioantimonate Lithium Superionic Conductors. J. Am. Chem. Soc., 141, 1900219013. DOI: 10.1021/jacs.9b08357

  • A. Shyamsunder, L. Blanc, A. Assoud, L.F. Nazar*, 2019. Reversible Calcium Plating and Stripping at Room Temperature Using a Borate Salt. ACS Energy Lett., 4, 22712276. DOI: 10.1021/acsenergylett.9b01550

  • L. Zhou, A. Assoud, A. Shyamsunder, A. Huq, Q. Zhang, P. Hartmann, J. Kulisch, L.F. Nazar*, 2019. An Entropically Stabilized Fast-Ion Conductor: Li3.25[Si0.25P0.75]S4Chem. Mater., 31, 78017811. DOI: 10.1021/acs.chemmater.9b00657

  • Z. Zhang, Z. Zou, K. Kaup, R. Xiao, S. Shi*, M. Avdeev*, Y.S. Hu*, D. Wang, B. He, H. Li, X. Huang, L.F. Nazar*, L. Chen, 2019. Correlated Migration Invokes Higher Na+-Ion Conductivity in NaSICON-Type Solid Electrolytes. Adv. Energ. Mater., 9, 1902373. DOI: 10.1002/aenm.201902373

  • C.Y. Kwok, Q. Pang, A. Worku, X. Liang, M. Gauthier,* L.F. Nazar*, 2019. Impact of the Mechanical Properties of a Functionalized Cross-Linked Binder on the Longevity of Li–S Batteries. ACS AMI, 11, 2248122491. DOI: 10.1021/acsami.9b06456

  • P. Adeli, J.D. Bazak, K-H. Park, I. Kochetkov, A. Huq, G. Goward*, L.F. Nazar*, 2019. Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution. Angew. Chemie Int. Ed., 58, 86818686. DOI: 10.1002/anie.201814222

  • L. Zhou, K-H. Park, X. Sun, F. Lalere, T. Adermann, P. Hartmann, L.F. Nazar*, 2019. Solvent-Engineered Design of Argyrodite Li6PS5X (X = Cl, Br, I) Solid Electrolytes with High Ionic Conductivity. ACS Energy Lett., 4, 265270. DOI: 10.1021/acsenergylett.8b01997. In top downloaded papers that month.

  • Q. Pang, C.Y. Kwok, D. Kundu, X. Liang, L.F. Nazar*,2019. Lightweight Metallic MgB2 Mediates Polysulfide Redox and Promises High-Energy-Density Lithium-Sulfur Batteries. Joule3, 136148. DOI: 10.1016/j.joule.2018.09.024.  Featured in C&E News, Oct 29, 2018.

Back to top.

2018

  • Q. Pang, L. Zhou, L.F. Nazar*, 2018. Elastic and Li-ion–percolating hybrid membrane stabilizes Li metal plating. Proc. Nat. Acad. Sci., 115, 1238912394. DOI: 10.1073/pnas.1809187115

  • C. Xia, C.Y. Kwok, L.F. Nazar*, 2018. A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide. Science, 361, 777781. DOI: 10.1126/science.aas9343

  • E.P. Ramos, Z. Zhang, A. Assoud, K. Kaup, F. Lalère, L.F. Nazar*, 2018. Correlating Ion Mobility and Single Crystal Structure in Sodium-Ion Chalcogenide-Based Solid State Fast Ion Conductors: Na11Sn2PnS12 (Pn = Sb, P). Chem. Mater., 30, 74137417. DOI: 10.1021/acs.chemmater.8b02077

  • Q. Pang, X. Liang, I. Kochetkov, P. Hartmann, L.F. Nazar*, 2018. Stabilizing Lithium Plating by a Biphasic Surface Layer Formed In Situ. Angewandte Chemie Int. Ed., 57, 97959798. DOI: 10.1002/anie.201805456. Hot paper.

  • Z. Zhang, Y. Shao, B. Lotsch, Y.S. Hu, H. Li, J. Janek*, L.F. Nazar*, C. Nan, J. Maier*, M. Armand, L. Chen*, 2018. New horizons for inorganic solid state ion conductors. Energy Environ. Sci., 11, 19451976. DOI: 10.1039/C8EE01053F

  • Q. Pang, A. Shyamsunder, B. Narayanan, C.Y. Kwok, L.A. Curtiss, L.F. Nazar*, 2018. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nature Energy, 3, 783791. DOI: 10.1038/s41560-018-0214-0. Featured in C&E News, Aug 16, 2018.

  • P. Bonnick, L. Blanc, S.H. Vajargah, C.W. Lee, X. Sun, M. Balasubramanian, L.F. Nazar*, 2018. Insights into Mg2+ Intercalation in a Zero-Strain Material: Thiospinel MgxZr2S4Chem. Mater., 30, 46834693. DOI: 10.1021/acs.chemmater.8b01345

  • Z. Li, S. Ganapathy, Y. Xu, Q. Zhu, W. Chen, I. Kochetkov, C. George, L.F. Nazar, M. Wagemaker*, 2018. Fe2O3 Nanoparticle Seed Catalysts Enhance Cyclability on Deep (Dis)charge in Aprotic Li–O2 Batteries. Adv. Energy Mater., 8, 1703513. DOI: 10.1002/aenm.201703513

  • D. Kundu, S. Hosseini, L. Wan, B. Adams, D. Prendergast, L.F. Nazar*, 2018. Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci., 11, 881892. DOI: 10.1039/C8EE00378E

  • Z. Zhang, E. Ramos, F. Lalere, A. Assoud, K. Kaup, P. Hartmann, L.F. Nazar*, 2018. Na11Sn2PS12: A New Solid State Sodium Superionic Conductor, Energy Environ. Sci., 11, 87–93. DOI: 10.1039/C7EE03083E

  • K. Kaup, F. Lalere, A. Huq, A. Shyamsunder, T. Adermann, P. Hartmann, L.F. Nazar*, 2018. Correlation of Structure and Fast Ion Conductivity in the Solid Solution Series Li1+2xZn1–xPS4. Chem. Mater., 30, 592596. DOI: 10.1021/acs.chemmater.7b05108

  • X. Sun, L. Blanc, G.M. Nolis, P. Bonnick, J. Cabana, L.F Nazar*, 2018. NaV1.25Ti0.75O4: A Potential Post-Spinel Cathode Material for Mg Batteries. Chem. Mater., 30, 121128. DOI: 10.1021/acs.chemmater.7b03383

Back to top.

2017

  • Q. Pang, X. Liang, A. Shysamsunder, L.F. Nazar*, 2017. An In Vivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal. Joule, 1, 871886. DOI: 10.1016/j.joule.2017.11.009

  • S.Y. Kim, D. Kundu, L.F. Nazar*, 2017. A 4 V Na+ Intercalation Material in a New Na-Ion Cathode Family. Adv. Energy Mater., 8, 1701729–1701735. DOI: 10.1002/aenm.201701729

  • X. Liang, Q. Pang, I. Kochetkov, M. Safont-Sempere, H. Huang, X. Sun, L.F. Nazar*, 2017. A facile surface chemistry route to a stabilized lithium metal anode. Nature Energy, 2, 17119–17126. DOI: 10.1038/nenergy.2017.119

  • E. Talaie, S.Y. Kim, N. Chen, L.F. Nazar*, 2017. Structural Evolution and Redox Processes Involved in the Electrochemical Cycling of P2–Na0.67[Mn0.66Fe0.20Cu0.14]O2. Chem. Mater., 29, 6684–6697. DOI: 10.1021/acs.chemmater.7b01146

  • X. Sun, R. Tripathi, G. Popov, M. Balasubramanian, L.F. Nazar*, 2017. Stabilization of Lithium Transition Metal Silicates in the Olivine Structure. Inorg. Chem., 56, 9931–9937. DOI: 10.1021/acs.inorgchem.7b01453

  • C.-W. Lee, Q. Pang, S. Ha, L. Cheng, S.-D. Han, K. Zavadil, K.G. Gallagher*, L.F. Nazar*, M. Balasubramanian*, 2017. Directing the Lithium–Sulfur Reaction Pathway via Sparingly Solvating Electrolytes for High Energy Density Batteries. ACS Central Science, 3, 605–613. DOI: 10.1021/acscentsci.7b00123

  • P. Bonnick, X. Sun, K.-C. Lau, C. Liao, L.F. Nazar*, 2017. Monovalent versus Divalent Cation Diffusion in Thiospinel Ti2S4J. Phys. Chem. Lett., 8, 2253–2257. DOI: 10.1021/acs.jpclett.7b00618

  • G. He, L.F. Nazar*, 2017. Crystallite Size Control of Prussian White Analogues for Nonaqueous Potassium-Ion Batteries. ACS Energy Lett, 2, 1122–1127. DOI: 10.1021/acsenergylett.7b00179

  • H. Wang, N. Sa, M.N. He, X. Liang, L.F. Nazar, M. Balasubramanian, K.G. Gallagher, B. Key*, 2017. In Situ NMR Observation of the Temporal Speciation of Lithium Sulfur Batteries during Electrochemical Cycling. J. Phys. Chem. C., 121, 6011–6017. DOI: 10.1021/acs.jpcc.7b01922

  • A. Shyamsunder, W. Beichel, P. Klose, Q. Pang, H. Scherer, A. Hoffmann, G.K. Murphy, I. Krossing*, L.F. Nazar*, 2017. Inhibiting Polysulfide Shuttle in Lithium–Sulfur Batteries through Low-Ion-Pairing Salts and a Triflamide Solvent. Angewandte Chemie Int. Ed., 56, 6192–6197. DOI: 10.1002/anie.201701026

  • E. de la Llave, P.K. Nayak, E. Levi, T.R. Penki, S. Bubil, P. Hartmann, F.-F. Chesneau, M. Greenstein, L.F. Nazar, D. Aurbach*, 2017. Electrochemical performance of Na0.6[Li0.2Ni0.2Mn0.6]O2 cathodes with high-working average voltage for Na-ion batteries. J. Mater. Chem., 5, 5858–5864. DOI: 10.1039/C6TA10577G

  • Q. Pang, X. Liang, C.Y. Kwok, J. Kulisch, L.F. Nazar*, 2017. A Comprehensive Approach toward Stable Lithium–Sulfur Batteries with High Volumetric Energy Density. Adv. Energy Mater., 7,1601630–1601638.DOI: 10.1002/aenm.201601630

  • E. Talaie, P. Bonnick, X. Sun, Q. Pang, X. Liang, L.F. Nazar*, 2017. Methods and Protocols for Electrochemical Energy Storage Materials Research. Chem. Mater., 29, 90–105. DOI: 10.1021/acs.chemmater.6b02726

  • X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, L.F. Nazar*, 2017. Interwoven MXene Nanosheet/Carbon-Nanotube Composites as Li–S Cathode Hosts. Advanced Materials, 29, 1603040–1603046. DOI: 10.1002/adma.201603040

Back to top.

2016

  • L.F. Nazar*, 2016. Nano on Reflection (part of a collection of articles on experts in different areas of nanotechnology). Nature Nanotech, 11, 828–834. DOI: 10.1038/nnano.2016.232

  • E. de la Llave, E. Talaie, E. Levi, P. Kumar, M. Dixit, P.T. Rao, P. Hartmann, F. Chesneau, D.T. Major, M. Greenstein, D. Aurbach*, L.F. Nazar*, 2016. Improving Energy Density and Structural Stability of Manganese Oxide Cathodes for Na-Ion Batteries by Structural Lithium Substitution. Chem. Mater., 28, 9064–9076. DOI: 10.1021/acs.chemmater.6b04078

  • G.S. Gautam, X. Sun, V. Duffort, L.F. Nazar*, G. Ceder*, 2016. Impact of Intermediate Sites on Bulk Diffusion Barriers: Mg Intercalation in Mg2Mo3O8J. Mater. Chem. A, 4, 17643–17648. DOI: 10.1039/C6TA07804D

  • C. Burke, R. Black, I. Kochetkov, V. Giordani, D. Addison*, L.F. Nazar*, B. McCloskey*, 2016. Implications of 4 e Oxygen Reduction via Iodide Redox Mediation in Li–O2 Batteries. ACS Energy Lett., 1, 747–756. DOI: 10.1021/acsenergylett.6b00328

  • S. Ganapathy, J. Heringa, M. Anastasaki, B.D. Adams, M. van Hulzen, S. Basak, Z. Li, J.P. Wright, L.F. Nazar, N.H. van Dijk, M. Wagemaker*, 2016. Operando nanobeam diffraction to follow the decomposition of individual Li2O2 grains in a non-aqueous Li-O2 battery. J. Phys. Chem. Lett., 7, 3388–3394. DOI: 10.1021/acs.jpclett.6b01368

  • C. Xia, R. Fernandes, F.H. Cho, N. Sudhakar, B. Buonacorsi, S. Walker, M. Xu, J. Baugh*, L.F. Nazar*, 2016. Direct Evidence of Solution-Mediated Superoxide Transport and Organic Radical Formation in Sodium-Oxygen Batteries. J. Am. Chem. Soc.,138,11219–11226. DOI: 10.1021/jacs.6b05382

  • D. Aurbach, B. McCloskey, L.F. Nazar, P.G. Bruce, 2016. Advances in understanding mechanisms underpinning lithium–air batteries (invited). Nature Energy, 1: 16128. DOI: 10.1038/NENERGY.2016.128.

  • Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar*, 2016. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes (invited). Nature Energy, 1: 16132. DOI: 10.1038/NENERGY.2016.132.

  • M.R. Busche, D.A. Weber, Y. Schneider, C. Dietrich, S. Wenzel, T. Leichtweiss, D. Schroder, W. Zhang, H. Weigand, D. Walter, S. Sedlmaier, D. Houtarde, L.F. Nazar, J. Janek*, 2016.In Situ Monitoring of Fast Li-Ion Conductor Li7P3S11 Crystallization Inside a Hot-Press Setup. Chem. Mater. 28, 6152–6155. DOI: 10.1021/acs.chemmater.6b02163

  • V. Duffort, X. Sun, L.F. Nazar*, 2016. Screening for positive electrodes for magnesium batteries: a protocol for studies at elevated temperatures. Chem. Comm., 52, 12458–12461. DOI: 10.1039/c6cc05363g

  • D. Kundu, B.D. Adams, V. Duffort, S. Hosseini, L.F. Nazar*, 2016. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nature Energy, 1: 16119. DOI: 10.1038/NENERGY.2016.119.  Featured in C & E News, Sep 5, 2016.

  • M. Safari, C.Y. Kwok, L.F. Nazar*, 2016. Transport Properties of Polysulfide Species in Lithium–Sulfur Battery Electrolytes: Coupling of Experiment and Theory. ACS Central Science, 2, 560–568. DOI: 10.1021/acscentsci.6b00169

  • X. Sun, P. Bonnick, L.F. Nazar*, 2016. Layered TiS2 Positive Electrode for Mg Batteries. ACS Energy Lett., 1, 297–301. DOI: 10.1021/acsenergylett.6b00145

  • T. Matsuyama, A.Hayashi*, C.J. Hart, L.F. Nazar, M. Tatsumisago*, 2016. Amorphous TiS3/S/C composite positive electrodes with high capacity for rechargeable lithium batteries. J. Electrochem. Soc., 163, A1730–A1735. DOI: 10.1149/2.1061608jes

  • X. Sun, P. Bonnick, V. Duffort, M. Liu, Z. Rong, K. Persson, G. Ceder, L.F. Nazar*, 2016. A high capacity thiospinel cathode for Mg batteries. Energy Environ. Sci., 9, 2273–2277. DOI: 10.1039/C6EE00724D

  • J.H. Ha, B. Adams, J.-H. Cho, V. Duffort, J.H. Kim, K.Y. Chung, B.W. Cho, L.F. Nazar*, S.H. Oh*, 2016. A conditioning-free magnesium chloride complex electrolyte for rechargeable magnesium batteries. J. Mater. Chem. A, 4, 7160–7164. DOI: 10.1039/C6TA01684G

  • R. Black, A. Shyamsunder, P. Adeli, D. Kundu, G. Murphy, L.F. Nazar*, 2016. The Nature and Impact of Side Reactions in Glyme-based Sodium–Oxygen Batteries. ChemSusChem, 9, 1795–1803. DOI: 10.1002/cssc.201600034

  • X. Liang, L.F. Nazar*, 2016. In Situ Reactive Assembly of Scalable Core–Shell Sulfur–MnO2 Composite Cathodes. ACS Nano, 10, 4192–4198. DOI: 10.1021/acsnano.5b07458

  • X. Sun, V. Duffort, L.F. Nazar*, 2016. Prussian Blue Mg–Li Hybrid Batteries. Advanced Science, 3, 1600044. DOI: 10.1002/advs.201600044

  • Q. Pang, L.F. Nazar*, 2016. Long-Life and High-Areal-Capacity Li-S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption. ACS Nano, 10, 4111–4118. DOI: 10.1021/acsnano.5b07347

  • X. Sun, V. Duffort, L. Mehdi, N. Browning, L.F. Nazar*, 2016. Investigation of the Mechanism of Mg Insertion in Birnessite in Nonaqueous and Aqueous Rechargeable Mg-Ion Batteries. Chem. Mater., 28, 534–542. DOI: 10.1021/acs.chemmater.5b03983

  • Q. Pang, D. Kundu, L.F. Nazar*, 2016. A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries. Materials Horizons, 3, 130–136. DOI: 10.1039/C5MH00246J

  • X. Liang, C.Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier, H. Huang, C.J. Hart, D. Houtarde, K. Kaup, H. Sommer, T. Brezesinski, J. Janek, L.F. Nazar*, 2016. Tuning Transition Metal Oxide–Sulfur Interactions for Long Life Lithium Sulfur Batteries: The “Goldilocks” Principle. Advanced Energy Materials, 6, 1501636. DOI: 10.1002/aenm.201501636

Back to top.

2015

  • D. Kundu, R. Black, B. Adams, L.F. Nazar*, 2015. A Highly Active Low Voltage Redox Mediator for Enhanced Rechargeability of Lithium–Oxygen Batteries. ACS Cent. Sci., 1, 510–515. DOI: 10.1021/acscentsci.5b00267

  • Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar*, 2015. Review—The Importance of Chemical Interactions between Sulfur Host Materials and Lithium Polysulfides for Advanced Lithium-Sulfur Batteries. J. Electrochem. Soc., 162, A2567–A2576. DOI: 10.1149/2.0171514jes

  • Q. Pang, J. Tang, H. Huang, X. Liang, C. Hart, K.C. Tam*, L.F. Nazar*, 2015. A Nitrogen and Sulfur Dual-Doped Carbon Derived from Polyrhodanine@Cellulose for Advanced Lithium–Sulfur Batteries. Adv. Mater., 27, 6021–6028. DOI: 10.1002/adma.201502467

  • E. Talaie, V. Duffort, H. Smith, B. Fultz, L.F. Nazar*, 2015. Structure of the high voltage phase of layered P2-Na2/3−z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability. Energy Environ. Sci., 8,2512–2523. DOI: 10.1039/C5EE01365H  

  • Y. Rangom, X.W. Tang*, L.F. Nazar*, 2015. Carbon Nanotube-Based Supercapacitors with Excellent ac Line Filtering and Rate Capability via Improved Interfacial Impedance. ACS Nano9, 7248–7255. DOI: 10.1021/acsnano.5b02075

  • D. Kundu, R. Black, B. Adams, K. Harrison, K. Zavadil, L.F. Nazar*, 2015. Nanostructured Metal Carbides for Aprotic Li–O2 Batteries: New Insights into Interfacial Reactions and Cathode Stability. J. Phys. Chem. Lett., 6, 2252–2258.  DOI: 10.1021/acs.jpclett.5b00721

  • C. Xia, R. Black, R. Fernandes, B. Adams, L.F. Nazar*, 2015. The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nature Chemistry,7, 496–501. DOI: 10.1038/nchem.2260

  • V. Duffort, E. Talaie, R. Black, L.F. Nazar*, 2015. Uptake of CO2 in Layered P2-Na0.67Mn0.5Fe0.5O2: Insertion of Carbonate Anions. Chem Mater., 27, 2515–2524. DOI: 10.1021/acs.chemmater.5b00097

  • S.H. Oh, B. Adams, B. Lee, L.F. Nazar*, 2015. Direct, Soft Chemical Route to Mesoporous Metallic Lead Ruthenium Pyrochlore and Investigation of its Electrochemical Properties. Chem. Mater., 27, 2322–2331. DOI: 10.1021/cm5034904

  • X. Liang, A. Garsuch, L.F. Nazar*, 2015. Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium–Sulfur Batteries. Angewandte Chemie, 54, 3907–3911. DOI: 10.1002/anie.201410174

  • H.W. Park, D.U. Lee, M.G. Park, R. Ahmed, M.H. Seo, L.F. Nazar*, Z. Chen*, 2015. Perovskite–Nitrogen-Doped Carbon Nanotube Composite as Bifunctional Catalysts for Rechargeable Lithium–Air Batteries. ChemSusChem, 8, 1058–1065. DOI: 10.1002/cssc.201402986

  • D. Kundu, R. Tripathi, G. Popov, W.R.M. Makahnouk, L.F. Nazar*, 2015. Synthesis, Structure, and Na-Ion Migration in Na4NiP2O7F2: A Prospective High Voltage Positive Electrode Material for the Na-Ion Battery. Chem. Mater., 27, 885–891. DOI: 10.1021/cm504058k

  • C. Hart, M. Cuisinier, X. Liang, D. Kundu, A. Garsuch, L.F. Nazar*, 2015. Rational design of sulphur host materials for Li–S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss. Chem. Commun.51, 2308–2311. DOI: 10.1039/C4CC08980D

  • M. Cuisinier, C. Hart, M. Balasubramanian, A. Garsuch, L.F. Nazar*, 2015. Radical or Not Radical: Revisiting Lithium–Sulfur Electrochemistry in Nonaqueous Electrolytes. Advanced Energy Materials5, 1401801–1401810. DOI: 10.1002/aenm.201401801

  • X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar*, 2015. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nature Commun., 6, 56825688. DOI: 10.1038/ncomms6682

  • B. Adams, R. Black, Z. Williams, R. Fernandes, M. Cuisinier, E.J. Berg, P. Novak, G.K. Murphy, L.F. Nazar*, 2015. Towards a Stable Organic Electrolyte for the Lithium Oxygen Battery. Advanced Energy Materials, 5, 1400867. DOI: 10.1002/aenm.201400867

  • D. Kundu, E. Talaie, V. Duffort, L.F. Nazar*, 2015. The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage. Angewandte Chemie Int. Ed., 54, 34313448. DOI: 10.1002/anie.201410376

  • D. Kundu, R. Black, E.J. Berg, L.F. Nazar*, 2015. A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries. Energy Environ. Sci., 8, 1292–1298. DOI: 10.1039/C4EE02587C

Back to top.

2014

  • H.W. Park, D.U. Lee, P. Zamani, M.H. Seo, L.F. Nazar*, Z. Chen*, 2014. Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries. Nano Energy, 10, 192200. DOI: 10.1016/j.nanoen.2014.09.009

  • B. Adams, R. Black, C. Radtke, Z. Williams, L. Mehdi, N. Browning, L.F. Nazar*, 2014. The Importance of Nanometric Passivating Films on Cathodes for Li–Air Batteries. ACS Nano, 8, 1248312493. DOI: 10.1021/nn505337p

  • S. Ganapathy, B. Adams, G. Stenou, M.S. Anastasaki, K. Goubitz, X.-F. Miao, L.F. Nazar*, M. Wagemaker*, 2014. Nature of Li2O2 Oxidation in a Li–O2 Battery Revealed by Operando X-ray Diffraction. J. Am. Chem. Soc., 136, 1633516344. DOI: 10.1021/ja508794r

  • M. Safari, B. Adams, L.F. Nazar*, 2014. Kinetics of Oxygen Reduction in Aprotic Li–O2 Cells: A Model-Based Study. J. Phys. Chem. Lett., 5, 34863491. DOI: 10.1021/jz5018202

  • Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar*, 2014. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nature Commun., 5:4759. DOI: 10.1038/ncomms5759

  • M. Cuisinier, P.-E. Cabelguen, B. Adams, A. Garsuch, M. Balasubramanian, L.F. Nazar*, 2014. Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries. Energy Environ. Sci., 7, 2697–2705. DOI: 10.1039/c4ee00372a

  • M.H. Cho, J. Trottier, C. Gagnon, P. Hovington, D. Clément, A. Vijh, C.-S. Kim, A. Guerfi, R. Black, L.F. Nazar, K. Zaghib*, 2014. The effects of moisture contamination in the Li-O2 battery. J. Power Sources, 268, 565–574. DOI: 10.1016/j.jpowsour.2014.05.148

  • G. He, B. Mandlmeier, J. Schuster, L.F. Nazar*, T. Bein*, 2014. Bimodal Mesoporous Carbon Nanofibers with High Porosity: Freestanding and Embedded in Membranes for Lithium–Sulfur Batteries. Chem. Mater., 26, 3879–3886.DOI:10.1021/cm403740r

  • X. Ji, G. He, C. Andrei, L.F. Nazar*, 2014. Gentle reduction of SBA-15 silica to its silicon replica with retention of morphology. RSC Advances, 4, 22048–22052. DOI: 10.1039/C3RA46557H

  • G. He, C. Hart, X. Liang, A. Garsuch, L.F. Nazar*, 2014. Stable Cycling of a Scalable Graphene-Encapsulated Nanocomposite for Lithium–Sulfur Batteries. ACS AMI, 6, 10917–10923. DOI: 10.1021/am500632b

  • L.F. Nazar*, M. Cuisinier, Q. Pang, 2014. Lithium-sulfur batteries. MRS Bulletin, 39, 436–442. DOI: 10.1557/mrs.2014.86

  • H. Park, T. Song, R. Tripathi, L.F. Nazar*, U. Paik*, 2014. Li2MnSiO4/carbon nanofiber cathodes for Li-ion batteries. Ionics, 20, 1351–1359. DOI: 10.1007/s11581-014-1105-4

  • T. Song, H. Cheng, K. Town, H. Park, R.W. Black, S. Lee, W.I. Park, Y. Huang, J.A. Rogers, L.F. Nazar*, U. Paik*, 2014. Electrochemical Properties of Si-Ge Heterostructures as an Anode Material for Lithium Ion Batteries. Adv. Funct. Mater., 24, 1458–1464. DOI: 10.1002/adfm.201302122

Back to top.

2013

  • G. He, S. Evers, X. Liang, M. Cuisinier, A. Garsuch, L.F. Nazar*, 2013. Tailoring Porosity in Carbon Nanospheres for Lithium–Sulfur Battery Cathodes. ACS Nano, 7, 10920–10930.DOI: 10.1021/nn404439r

  • H.W. Park, D.U. Lee, Y. Liu, J. Wu, L.F. Nazar, Z. Chen, 2013. Bi-Functional N-Doped CNT/Graphene Composite as Highly Active and Durable Electrocatalyst for Metal Air Battery Applications. J. Electrochem. Soc., 160, A2244–A2250. DOI: 10.1149/2.097311jes

  • M. Cuisinier, P.-E. Cabelguen, S. Evers, G. He, M. Kolbeck, A. Garsuch, T. Bolin, M. Balasubramanian, L.F. Nazar*, 2013. Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption Spectroscopy. J. Phys Chem. Lett.,4, 3227–3232. DOI: 10.1021/jz401763d

  • D.U. Lee, H.W. Park, D. Higgins, L.F. Nazar, Z. Chen, 2013. Highly Active Graphene Nanosheets Prepared via Extremely Rapid Heating as Efficient Zinc-Air Battery Electrode Material. J. Electrochem. Soc., 160, F910–915. DOI:  10.1149/2.016309jes

  • R. Tripathi, S.M. Wood, M.S. Islam*, L.F. Nazar*, 2013. Na-ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4. Energy Environ. Sci., 6, 2257–2264. DOI: 10.1039/C3EE40914G

  • B. Adams, C. Radtke, R. Black, M. Trudeau, K. Zaghib, L.F. Nazar*, 2013. Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ. Sci., 6, 1772. DOI: 10.1039/C3EE40697K

  • M. Mazloumi, S. Shadmehr, Y. Rangom, L.F. Nazar, X. Tang*, 2013. Fabrication of Three-Dimensional Carbon Nanotube and Metal Oxide Hybrid Mesoporous Architectures. ACS Nano, 7, 4281–4288. DOI: 10.1021/nn400768p

  • G. He, G. Popov, L.F. Nazar*, 2013. Hydrothermal Synthesis and Electrochemical Properties of Li2CoSiO4/C Nanospheres. Chem Mater., 25, 1024–1031. DOI: 10.1021/cm302823f

  • K.-H. Ha, S.H. Woo, D. Mok, N.-S. Choi, Y. Park, S.M. Oh, Y. Kim, J. Kim, J. Lee, L. F. Nazar*, K.T. Lee*, 2013. Batteries: Na4-αM2+α/2(P2O7)2 (2/3 ≤ α ≤ 7/8, M = Fe, Fe0.5Mn0.5, Mn): A Promising Sodium Ion Cathode for Na-ion Batteries. Adv. Energy Mater.,3, 689–692. DOI: 10.1002/aenm.201370023

  • R. Tripathi, G. Popov, X.Q. Sun, D.H. Ryan, L.F. Nazar*, 2013. Ultra-rapid microwave synthesis of triplite LiFeSO4F. J. Mater. Chem. A, 1, 29902994. DOI: 10.1039/C2TA01022D

  • H.W. Park, D.U. Lee, L.F. Nazar, Z. Chen*, 2013. Oxygen Reduction Reaction Using MnO2 Nanotubes/Nitrogen-Doped Exfoliated Graphene Hybrid Catalyst for Li-O2 Battery Applications. J. Electrochem. Soc., 160, A344–A350. DOI: 10.1149/2.086302jes  

  • R. Black, J.-H. Lee, B. Adams, C. Mims, L.F. Nazar*, 2013. The Role of Catalysts and Peroxide Oxidation in Lithium–Oxygen Batteries. Angewandte Chemie, 52, 392–396. DOI: 10.1002/ange.201205354

  • S Evers, L.F. Nazar*, 2013. New Approaches for High Energy Density Lithium–Sulfur Battery Cathodes. Accounts of Chemical Research, 46, 1135–1149. DOI: 10.1021/ar3001348

Back to top.

2012

  • B. Ellis, K. Town, L.F. Nazar*, 2012. New composite materials for lithium-ion batteries. Electrochemica Acta, 84, 145–154. DOI: 10.1016/j.electacta.2012.04.113

  • K.T. Lee, R. Black, T. Yim, X. Ji, L.F. Nazar*, 2012. Surface-Initiated Growth of Thin Oxide Coatings for Li–Sulfur Battery Cathodes. Advanced Energy Materials, 2, 1490–1496. DOI: 10.1002/aenm.201200006

  • S.H. Oh, R. Black, E. Pomerantseva, J.-H. Lee, L.F. Nazar*, 2012. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium–O2 batteries. Nature Chem., 4, 1004–1010. DOI: 10.1038/nchem.1499

  • S. Evers, T. Yim, L.F. Nazar*, 2012. Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li–S Battery. J. Phys. Chem C, 116, 19653–19658. DOI: 10.1021/jp304380j

  • J.-H. Lee, R. Black, G. Popov, E. Pomerantseva, F. Nan, G. Botton, L.F. Nazar*, 2012. The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium–oxygen batteries. Energy Environ. Sci., 5, 95589565. DOI: 10.1039/C2EE21543H

  • N.-S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho*, P. G. Bruce*, 2012. Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angewandte Chemie, 51, 9994–10024. DOI: 10.1002/anie.201201429

  • B. Ellis, L.F. Nazar*, 2012. Reply to Comment on “Positive Electrode Materials for Li-Ion and Li-Batteries”. Chem. Mater., 24, 2244–2245. DOI:10.1021/cm301245q

  • S.H. Oh, L.F. Nazar*, 2012. Oxide Catalysts for Rechargeable High-Capacity Li–O2 Batteries. Advanced Energy Materials, 2, 903–910. DOI: 10.1002/aenm.201200018

  • R. Black, B. Adams, and L.F. Nazar*, 2012. Non-Aqueous and Hybrid Li-O2 Batteries. Advanced Energy Materials,2, 801–815. DOI: 10.1002/aenm.201200001

  • B.L. Ellis, L.F. Nazar*, 2012. Sodium and sodium-ion energy storage batteries. Current Opinions in Solid State and Materials Science16, 168–177. DOI: 10.1016/j.cossms.2012.04.002

  • A. Kim, R. Black, Y.-J. Hyun, L.F. Nazar, E. Prouzet*, 2012. Synthesis of monolithic meso–macroporous silica and carbon with tunable pore size. Chem. Comm, 48, 4335–4337. DOI: 10.1039/C2CC30815K

  • B. Ellis, L.F. Nazar*, 2012. Anion-Induced Solid Solution Electrochemical Behavior in Iron Tavorite Phosphates. Chem. Mater., 24, 966–968. DOI: 10.1021/cm203543q

  • J. Schuster, G. He, B. Mandlmeier, T. Kim, K.T. Lee, T. Bein*, L.F. Nazar*, 2012. Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium–Sulfur Batteries. Angewandte Chemie, 51, 3591–3595. DOI: 10.1002/anie.201107817

  • R. Black, S.H. Oh, J.-H. Lee, T. Yim, B. Adams, L.F. Nazar*, 2012. Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization. J. Am. Chem. Soc.,134, 2902–2905. DOI: 10.1021/ja2111543

  • B. Ellis, T.N. Ramesh, W.N. Rowan-Weetaluktuk, D.H. Ryan, L.F. Nazar*, 2012. Solvothermal synthesis of electroactive lithium iron tavorites and structure of Li2FePO4F. J. Mater. Chem., 22, 4759–4766. DOI: 10.1039/C2JM15273H

  • R. Tripathi, G. Popov, B. Ellis, A. Huq, L.F. Nazar*, 2012. Lithium metal fluorosulfate polymorphs as positive electrodes for Li-ion batteries: synthetic strategies and effect of cation ordering. Energy Environ. Sci., 5, 6238–6246. DOI: 10.1039/C2EE03222H

  • S. Evers, L.F. Nazar*, 2012. Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content. Chem. Comm.,48, 1233–1235. DOI: 10.1039/C2CC16726C

Back to top.

2011

  • B. Ellis, T.N. Ramesh, L.J.M. Davis, G. Goward, L.F. Nazar*, 2011. Structure and Electrochemistry of Two-Electron Redox Couples in Lithium Metal Fluorophosphates Based on the Tavorite Structure. Chem. Mater.,23, 5138–5148. DOI: 10.1021/cm201773n

  • H. Han, T. Song, J.-Y. Bae, L.F. Nazar, H. Kim, U. Paik*, 2011. Nitridated TiO2 hollow nanofibers as an anode material for high power lithium ion batteries. Energy Environ. Sci., 4, 4532–4536. DOI: 10.1039/C1EE02333K

  • S.H. Oh, T. Yim, E. Pomerantseva, L.F. Nazar*, 2011. Decomposition Reaction of Lithium Bis(oxalato)borate in the Rechargeable Lithium-Oxygen Cell. Electrochem. Solid-State Lett, 14, A185–A188. DOI: 10.1149/2.003112esl

  • L.J.M. Davis, B.L. Ellis, T.N. Ramesh, L.F. Nazar, A.D. Bain, G.R. Goward*, 2011. 6Li 1D EXSY NMR Spectroscopy: A New Tool for Studying Lithium Dynamics in Paramagnetic Materials Applied to Monoclinic Li2VPO4F. J. Phys Chem. C, 115, 22603–22608. DOI: 10.1021/jp2059408

  • K.T. Lee, T.N. Ramesh, F. Nan, G. Botton, L.F. Nazar*, 2011. Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries. Chem. Mater., 23, 3593–3600. DOI: 10.1021/cm200450y

  • G. He, X. Ji, L.F. Nazar*, 2011. High “C” rate Li-S cathodes: sulfur imbibed bimodal porous carbons. Energy Environ. Sci.,4, 2878–2883. DOI: 10.1039/C1EE01219C

  • R. Tripathi, G. Gardiner, M.S. Islam*, L.F. Nazar*, 2011. Alkali-ion Conduction Paths in LiFeSO4F and NaFeSO4F Tavorite-Type Cathode Materials. Chem. Mater., 23, 2278–2284. DOI: 10.1021/cm200683n

  • S.-P. Badi, M. Wagemaker*, B. Ellis, D.P. Singh, W.J.H. Borghols, W.H. Kan, D.H. Ryan, F.M. Mulder, L.F. Nazar*, 2011. Direct synthesis of nanocrystalline Li0.90FePO4: observation of phase segregation of anti-site defects on delithiation. J. Mater Chem., 21, 1008510093. DOI: 10.1039/C0JM04378H. Themed Issue on Advanced Battery Materials

  • X. Ji, S. Evers, R. Black, L.F. Nazar*, 2011. Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nature Comm., 2, 325–331. DOI: 10.1038/ncomms1293

  • G. He, J.F. Herbst, T.N. Ramesh, F.E. Pinkerton, M.S. Meyer, L.F. Nazar*, 2011. Investigation of hydrogen absorption in Li7VN4 and Li7MnN4. Phys. Chem. Chem. Phys., 13, 8889–8893. DOI: 10.1039/c0cp02892d

  • D.R. Rolison*, L.F. Nazar, 2011. Electrochemical energy storage to power the 21st century. MRS Bulletin, 36, 486–493. DOI: 10.1557/mrs.2011.136. MRS Bulletin Guest Editorial for Special Issue on Energy Storage

  • L.J.M. Davis, I. Heinmaa, B.L. Ellis, L.F. Nazar, G.R. Goward*, 2011. Influence of particle size on solid solution formation and phase interfaces in Li0.5FePO4 revealed by 31P and 7Li solid state NMRspectroscopy. Phys. Chem. Chem. Phys., 13, 5171–5177. DOI: 10.1039/C0CP01922D

Back to top.

2010

  • R. Tripathi, T.N. Ramesh, B. Ellis and L.F. Nazar*, 2010. Scalable Synthesis of Tavorite LiFeSO4F and NaFeSO4F Cathode Materials. Angewandte Chemie, 49, 8738–8742. DOI: 10.1002/anie.201003743

  • L. Cahill, Y. Iriyama, L.F. Nazar*, G.R. Goward*, 2010. Synthesis of Li4V(PO4)2F2 and 6,7LiNMR studies of its lithium ion dynamics. J. Mater. Chem., 20, 4340–4346. DOI: 10.1039/B926838C

  • H.K. Song, K.T. Lee, M.G. Kim, L.F. Nazar*, J. Cho*, 2010. Recent Progress in Nanostructured Cathode Materials for Lithium Secondary Batteries. Adv. Funct. Mater., 20, 3818–3834. DOI: 10.1002/adfm.201000231

  • S.H. Oh, L.F. Nazar*, 2010. Direct synthesis of electroactive mesoporous hydrous crystalline RuO2 templated by a cationic surfactant. J. Mater. Chem., 20, 3834–3839. DOI: 10.1039/B926734D

  • X. Ji, S. Evers, K.T. Lee, L.F. Nazar*, 2010. Agitation induced loading of sulfur into carbon CMK-3nanotubes: efficient scavenging of noble metals from aqueous solution. Chem. Comm., 46, 1658–1660. DOI: 10.1039/B918442B

  • T.N. Ramesh, K.T. Lee, B.L. Ellis, L.F. Nazar*, 2010. Tavorite Lithium Iron Fluorophosphate Cathode Materials: Phase Transition and Electrochemistry of LiFePO4F – Li2FePO4F. Electrochem. Solid-State Lett., 13, A43. DOI: 10.1149/1.3298353

  • X. Ji, L.F. Nazar*, 2010. Advances in Li-S batteries. J. Mater. Chem., 20, 9821–9826. DOI: 10.1039/B925751A

  • B.L. Ellis, W.R.M. Makahnouk, W.N. Rowan-Weetaluktuk, D.H. Ryan, L.F. Nazar*, 2010. Crystal Structure and Electrochemical Properties of A2MPO4F Fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni). Chem. Mater., 22, 1059–1070. DOI: 10.1021/cm902023h

  • B.L. Ellis, K.T. Lee, L.F. Nazar*, 2010. Positive Electrode Materials for Li-Ion and Li Batteries. Chem. Mater., 22, 691–714. DOI: 10.1021/cm902696j

  • X. Ji, K.T. Lee, R. Holden, L. Zhang, J. Zhang, G.A. Botton, M. Couillard, L.F. Nazar*, 2010. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nature Chemistry, 2, 286–293. DOI: 10.1038/nchem.553

  • B.L. Ellis, M. Wagemaker, F.M. Mulder, L.F. Nazar*, 2010. Comment on “Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Impact on Structure and Properties”. Adv. Funct. Mater., 20, 186–188. DOI: 10.1002/adfm.200900673

Back to top.

2009

  • K.T. Lee, X. Ji, M. Rault, L.F. Nazar*, 2009. Simple Synthesis of Graphitic Ordered Mesoporous Carbon Materials by a Solid-State Method Using Metal Phthalocyanines. Angewandte Chemie, 48, 52175220. DOI: 10.1002/anie.200806208

  • K.T. Lee, W.H. Kan, L.F. Nazar*, 2009. Proof of Intercrystallite Ionic Transport in LiMPO4 Electrodes (M = Fe, Mn). J. Am. Chem. Soc., 131, 60446045. DOI: 10.1021/ja8090559

  • X. Ji, K.T. Lee, L.F. Nazar*, 2009. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Mater., 8, 500–506. DOI: 10.1038/nmat2460

Back to top.

2008

  • M. Wagemaker*, B.L. Ellis, D. Lützenkirchen-Hecht, F.M. Mulder, L.F. Nazar*, 2008. Proof of Supervalent Doping in Olivine LiFePO4Chem. Mater., 20, 6313–6315. DOI: 10.1021/cm801781k

  • X. Ji, K.T. Lee, M. Monjauze, L.F. Nazar*, 2008. Strategic synthesis of SBA-15 nanorods. Chem. Commun.36, 4288–4290. DOI: 10.1039/B804327B. Featured on outer cover page, and cited as hot article

  • L.F. Nazar*, S.H. Oh, 2008. The Importance of Nanotechnology in Developing Better Energy Storage Materials for Automotive Transport (invited).Society of Automotive Engineers Technical Paper2008-01-0689. DOI: 10.4271/2008-01-0689. 

  • Y. Makimura, L.S. Cahill, Y. Iriyama, G. Goward, L.F. Nazar*, 2008. Layered Lithium Vanadium Fluorophosphate, Li5V(PO4)2F2: A 4 V Class Positive Electrode Material for Lithium-Ion Batteries. Chem. Mater., 20, 4240–4248. DOI: 10.1021/cm702346n

Back to top.

2007

  • B.L. Ellis, W.R.M. Makahnouk, Y. Makimura,  K. Toghill, L.F. Nazar*, 2007. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nature Mater., 6, 749–753. DOI: 10.1038/nmat2007

  • M. Koltypin, D. Aurbach*, L.F. Nazar and B. Ellis, 2007. More on the performance of LiFePO4 electrodes—The effect of synthesis route, solution composition, aging, and temperature. J. Power Sources, 174, 12411250. DOI: 10.1016/j.jpowsour.2007.06.045

  • B. Ellis, W.H. Kan, W.R.M. Makahnouk, L.F. Nazar*,2007.Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4J. Mater. Chem., 17, 3248–3254. DOI: 10.1039/B705443M

  • Y.-H. Rho, L.F. Nazar*, L. Perry, D. Ryan, 2007. Surface Chemistry of LiFePO4 Studied by Mössbauer and X-Ray Photoelectron Spectroscopy and Its Effect on Electrochemical Properties. J. Electrochem. Soc., 154, A283–289. DOI: 10.1149/1.2433539

  • X. Ji, P.S. Herle, Y.-H. Rho, L.F. Nazar*, 2007. Carbon/MoO2 Composite Based on Porous Semi-Graphitized Nanorod Assemblies from In Situ Reaction of Tri-Block Polymers, Chem. Mater., 19, 374383. DOI: 10.1021/cm060961y

  • B. Ellis, P.S. Herle, Y.-H. Rho, L.F. Nazar*, R. Dunlap, L.K. Perry, D.H. Ryan, 2007. Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk ion/electron transport. Faraday Discuss., 134, 119–141. DOI: 10.1039/B602698B. On the list of top 10 most cited articles in journal

  • D. Aurbach*, B. Markovsky, G. Salitra, E. Markevich, Y. Talyossef, M. Koltypin, L.F. Nazar, B. Ellis, D. Kovacheva, 2007. Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries. J. Power Sources, 165, 491–499. DOI: 10.1016/j.jpowsour.2006.10.025

  • M. Koltypin, D. Aurbach*, L.F. Nazar*, B. Ellis, 2007. On the Stability of LiFePO4 Olivine Cathodes under Various Conditions (Electrolyte Solutions, Temperatures). Electrochem. Solid-State Lett., 10, A40–A44. DOI: 10.1149/1.2403974

Back to top.

2006

  • B. Ellis, L.K. Perry, D.H. Ryan, L.F. Nazar*, 2006. Small Polaron Hopping in LixFePO4 Solid Solutions: Coupled Lithium-Ion and Electron Mobility. J. Am. Chem. Soc., 128, 11416–11422. DOI: 10.1021/ja0614114

  • S.-C. Yin, Y.-H. Rho, I. Swainson, L.F. Nazar*, 2006. X-ray/Neutron Diffraction and Electrochemical Studies of Lithium De/Re-Intercalation in Li1-xCo1/3Ni1/3Mn1/3O2 (x = 0 → 1). Chem. Mater., 18, 19011910. DOI: 10.1021/cm0511769

  • S.-C. Yin, P.S. Herle, A. Higgins, N.J. Taylor, Y. Makimura, L.F. Nazar*, 2006. Dimensional Reduction: Synthesis and Structure of Layered Li5M(PO4)2F2 (M = V, Cr). Chem. Mater., 18, 17451752. DOI: 10.1021/cm0513738

  • R. Stevens, J.L. Dodd, M.G. Kresch, B. Fultz*, B. Ellis, L.F. Nazar*, 2006. Phonons and Thermodynamics of Unmixed and Disordered Li0.6FePO4J. Phys. Chem. B, 110, 22732–22735. DOI: 10.1021/jp063831l

Back to top.

2005

  • L.S. Cahill, S.-C.Yin, A. Samoson, I. Heinmaa, L.F. Nazar*, G.R. Goward*,2005. 6Li NMR Studies of Cation Disorder and Transition Metal Ordering in Li[Ni1/3Mn1/3Co1/3]O2 Using Ultrafast Magic Angle Spinning. Chem. Mater., 17, 65606566. DOI: 10.1021/cm0508773

Back to top.

2004

  • S.-C. Yin, Y.-H. Rho, I. Swainson, L.F. Nazar*, 2004. Neutron diffraction and electrochemical studies of LixNi1/3Mn1/3Co1/3O2MRS Online Proceedings Library, 835, K11.10. DOI: 10.1557/PROC-835-K11.10

  • O. Crosnier, L.F. Nazar*, 2004. Facile Reversible Displacement Reaction of Cu3P with Lithium at Low Potential. Electrochem. Solid-State Lett., 7, A187190. DOI: 10.1149/1.1736592

  • S.-C. Yin, P.S. Strobel, H. Grondey, L.F. Nazar*, 2004. Li2.5V2(PO4)3: A Room-Temperature Analogue to the Fast-Ion Conducting High-Temperature γ-Phase of Li3V2(PO4)3. Chem. Mater., 16,14561465. DOI: 10.1021/cm034802f

  • P.S. Herle, B. Ellis, N. Coombs, L.F. Nazar*, 2004. Nano-network electronic conduction in iron and nickel olivine phosphates. Nature Materials, 3, 147–152. DOI: 10.1038/nmat1063

Back to top.

2003

  • O. Crosnier, C. Mounsey, P.S. Herle, N. Taylor, L.F. Nazar*, 2003. Crystal Structure and Electrochemical Behavior of Li2CuP: a Surprising Reversible Crystalline−Amorphous Transformation. Chem. Mater.,15, 4890–4892. DOI: 10.1021/cm034619m

  • S.-C. Yin, H. Grondey, P. Strobel, M. Anne, L.F. Nazar*, 2003. Electrochemical Property: Structure Relationships in Monoclinic Li3-yV2(PO4)3. J. Am. Chem. Soc., 125, 1040210411. DOI: 10.1021/ja034565h

  • J.L.C. Rowsell, N.J. Taylor, LF. Nazar*, 2003. Crystallographic investigation of the Co–B–O system, J. Solid State Chemistry, 174,189–197. DOI: 10.1016/S0022-4596(03)00217-2

  • D.C.C. Silva, O. Crosnier, G. Ouvrard, J. Greedan, A. Safa-Safat, L.F. Nazar*, 2003. Reversible Lithium Uptake by FeP2Electrochem. Solid-State Lett., 6, A162A166. DOI: 10.1149/1.1588112

  • S.-C. Yin, H. Grondey, P. Strobel, H. Huang, L.F. Nazar*, 2003. Charge Ordering in Lithium Vanadium Phosphates: Electrode Materials for Lithium-Ion Batteries. J. Am. Chem. Soc.,125, 326–327. DOI: 10.1021/ja028973h

Back to top.

2002

  • H. Huang, S.-C. Yin, T. Kerr, N. Taylor, L.F. Nazar*, 2002. Nanostructured Composites: A High Capacity, Fast Rate Li3V2(PO4)3/Carbon Cathode for Rechargeable Lithium Batteries. Adv. Mater.,14,1525–1528. DOI: 10.1002/1521-4095(20021104)14:21<1525::AID-ADMA1525>3.0.CO;2-3

  • F. Leroux, P.J. Dewar, M. Intissar, G. Ouvrard*, L.F. Nazar*, 2002. Study of the formation of mesoporous titania via a template approach and of subsequent Li insertion. J. Mater. Chem., 12, 3245–3255. DOI: 10.1039/B204051D

  • T.T. Emons, J. Li, L.F. Nazar*, 2002. Synthesis and Characterization of Mesoporous Indium Tin Oxide Possessing an Electronically Conductive Framework. J. Am. Chem. Soc., 124, 8516–8517. DOI: 10.1021/ja0125826

  • D.C.S. Souza, V. Pralong, A.J. Jacobson, L.F. Nazar*, 2002. A Reversible Solid-State Crystalline Transformation in a Metal Phosphide Induced by Redox Chemistry. Science, 296, 2012–2015. DOI: 10.1126/science.1071079

  • V. Pralong, D.C.S. Souza, K.T. Leung, L.F. Nazar*,2002.Reversible lithium uptake by CoP3 at low potential: role of the anion. Electrochemistry Communications, 4, 516–520. DOI: 10.1016/S1388-2481(02)00363-6

  • J.L.C. Rowsell, N.J. Taylor, L.F. Nazar*, 2002. Structure and Ion Exchange Properties of a New Cobalt Borate with a Tunnel Structure “Templated” by Na+. J. Am. Chem. Soc., 124, 6522–6523. DOI: 10.1021/ja020106p

  • L. Jones*, C. May, L.F. Nazar, T. Simpson, 2002. In vitro evaluation of the dehydration characteristics of silicone hydrogel and conventional hydrogel contact lens materials. Contact Lens and Anterior Eye, 25, 147–156. DOI: 10.1016/S1367-0484(02)00033-4

Back to top.

2001

  • H. Huang, S-C. Yin, L.F. Nazar*, 2001. Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates. Electrochem. Solid-State Lett., 4, A170–A174. DOI: 10.1149/1.1396695

  • J.L.C. Rowsell, V. Pralong, L.F. Nazar*, 2001. Layered Lithium Iron Nitride: A Promising Anode Material for Li-Ion Batteries. J. Am. Chem. Soc., 123, 8598–8659. DOI: 10.1021/ja0112745

  • H. Huang, L.F. Nazar*, 2001. Grafted Metal Oxide/Polymer/Carbon Nanostructures Exhibiting Fast Transport Properties. Angewandte Chemie, 40, 3880–3884. DOI: 10.1002/1521-3773(20011015)40:20<3880::AID-ANIE3880>3.0.CO;2-V

  • L.F. Nazar*, G. Goward, F. Leroux, M. Duncan, H. Huang, T. Kerr, J. Gaubicher, 2001. Nanostructured materials for energy storage. Intl. J. Inorg. Materials, 3, 191–200. DOI: 10.1016/S1466-6049(01)00026-5

  • J.L.C. Rowsell, L.F. Nazar*, 2001. Synthesis, structure, and solid-state electrochemical properties of Cr3BO6: a new chromium(III) borate with the norbergite structure. J. Mater. Chem., 11, 3228–3233. DOI: 10.1039/B100707F

  • G.R. Goward, N.J. Taylor, D.C.S. Souza, L.F. Nazar*, 2001. The true crystal structure of Li17M4 (M=Ge, Sn, Pb)–revised from Li22M5. J. Alloys and Compounds, 329, 82–91. DOI: 10.1016/S0925-8388(01)01567-5

Back to top.

2000

  • J. Li, L.F. Nazar*, 2000. Mesostructured iron sulfides. J. Chem. Soc., Chem. Commun., 1749–1750. DOI: 10.1039/B005574N

  • T.A. Kerr, J. Gaubicher, L.F. Nazar*, 2000. Highly Reversible Li Insertion at 4 V in ε ‐ VOPO4/α ‐ LiVOPO4 Cathodes. Electrochem. Solid-State Lett., 3, 460–464. DOI: 10.1149/1.1391179

  • J.L.C. Rowsell, J. Gaubicher, L.F. Nazar*, 2000. A new class of materials for lithium-ion batteries: iron(III) borates. J. Power Sources, 97-98, 254–257. DOI: 10.1016/S0378-7753(01)00532-8

  • J. Gaubicher, C. Wurm, G. Goward, C. Masquelier, L.F. Nazar*, 2000. Rhombohedral Form of Li3V2(PO4)3 as a Cathode in Li-Ion Batteries. Chem. Mater., 12, 3240–3242. DOI: 10.1021/cm000345g

  • J. Rowsell, L.F. Nazar*, 2000. Speciation and Thermal Transformation in Alumina Sols: Structures of the Polyhydroxyoxoaluminum Cluster [Al30O8(OH)56(H2O)26]18+ and Its δ-Keggin Moieté. J. Am. Chem. Soc., 122, 3777–3778. DOI: 10.1021/ja993711+

  • G.R.Goward, L.F. Nazar*, W. P. Power*, 2000. Electrochemical and multinuclear solid-state NMR studies of tin composite oxide glasses as anodes for Li ion batteries. J. Mater. Chem., 10, 1241–1249. DOI: 10.1039/B001352H

  • C. Masquelier*, C. Wurm, J. Rodriguez-Carvajal, J. Gaubicher, L.F. Nazar, 2000. A Powder Neutron Diffraction Investigation of the Two Rhombohedral NASICON Analogues: γ-Na3Fe2(PO4)3 and Li3Fe2(PO4)3. Chem. Mater., 12, 525–532. DOI: 10.1021/cm991138n

  • F. Leroux, L.F. Nazar*, 2000. Uptake of lithium by layered molybdenum oxide and its tin exchanged derivatives: high volumetric capacity materials. Solid State Ionics, 133, 37–50. DOI: 10.1016/S0167-2738(00)00701-3

  • F. Leroux, L.F. Nazar*, 2000. The Role of Oxygen in Low-potential Li Insertion in Metal Oxide Anode Materials. MRS Online Proceedings Library, 575, 173–177. DOI: 10.1557/PROC-575-173

Back to top.