You are here


Many aspects of number theory are well represented in our department, including:

  • Analytic number theory (Kuo, Liu, Rubinstein)
  • Arithmetic and algebraic geometry (McKinnon)
  • Computational number theory (Hare, Rubinstein)
  • Connections between L-functions and random matrix theory (Rubinstein)
  • Diophantine approximation (Stewart)
  • Diophantine equations (Stewart)
  • Drinfeld modules (Kuo, Liu)
  • Langland's program (Kuo)
  • Multiplicative number theory (Hare, Rubinstein, Stewart)
  • Riemann zeta function and L-functions (Rubinstein and Kuo)
  • Sieve theory (Liu)
  • Waring's problem over function fields (Liu)