Many aspects of number theory are well represented in our department, including:
- Analytic number theory (Kuo, Liu, Rubinstein, Wang)
- Arithmetic and algebraic geometry (McKinnon, Wang)
- Arithmetic statistics (Wang)
- Computational number theory (Hare, Rubinstein)
- Connections between L-functions and random matrix theory (Rubinstein)
- Diophantine approximation (Stewart)
- Diophantine equations (Stewart, Wang)
- Drinfeld modules (Kuo, Liu)
- Langland's program (Kuo)
- Multiplicative number theory (Hare, Rubinstein, Stewart)
- Riemann zeta function and L-functions (Rubinstein and Kuo)
- Sieve theory (Liu)
- Waring's problem over function fields (Liu)