Clarke, C. (2024). Test Entry Presented at the Nicks Test conference. Waterloo: Nick D. Retrieved from uwaterloo.ca/math (Original work published 2024)
References
Filter by:
Azzopardi, L., Clarke, C., Kantor, P. B., Mitra, B., Trippas, J. R., & Ren, Z. (2024). The Search Futures Workshop Presented at the The Search Futures Workshop conference. https://doi.org/10.1007/978-3-031-56069-9_57
Khalaji, M., Brown, T., Daudjee, K., & Aksenov, V. (2024). Practical Hardware Transactional vEB Trees Presented at the Practical Hardware Transactional VEB Trees conference. https://doi.org/10.1145/3627535.3638504
Pradeep, R., & Lin, J. (2024). Towards Automated End-to-End Health Misinformation Free Search With A Large Language Model Presented at the Automated End-to-End Health Misinformation Free Search With A Large Language Model conference. https://doi.org/10.1007/978-3-031-56066-8_9
Bonifati, A., Ozsu, T., Tian, Y., Voigt, H., Yu, W., & Zhang, W. (2024). The Future of Graph Analytics Presented at the The Future of Graph Analytics conference. https://doi.org/10.1145/3626246.3658369
Zhang, X., Ogueji, K., Ma, X., & Lin, J. (2024). Toward Best Practices for Training Multilingual Dense Retrieval Models ACM Transactions on Information Systems (TOIS), 42, 1-39. https://doi.org/10.1145/3613447
Arabzadeh, N., Bigdeli, A., & Clarke, C. (2024). Adapting Standard Retrieval Benchmarks to Evaluate Generated Answers Presented at the Adapting Standard Retrieval Benchmarks to Evaluate Generated Answers conference. https://doi.org/10.1007/978-3-031-56060-6_26
Alaofi, M., Arabzadeh, N., Clarke, C., & Sanderson, M. (2024). Generative Information Retrieval Evaluation ArXiv, abs/2404.08137. https://doi.org/10.48550/ARXIV.2404.08137
Rorseth, J., Godfrey, P., Golab, L., Srivastava, D., & Szlichta, J. (2024). RAGE Against the Machine: Retrieval-Augmented LLM Explanations ArXiv, abs/2405.13000. https://doi.org/10.48550/ARXIV.2405.13000
Faggioli, G., Dietz, L., Clarke, C., Demartini, G., Hagen, M., Hauff, C., … Wachsmuth, H. (2024). Who Determines What Is Relevant? Humans or AI? Why Not Both? Communications of the ACM, 67, 31-34. https://doi.org/10.1145/3624730