Voorhees, E. M., Soboroff, I., & Lin, J. (2022). Can Old TREC Collections Reliably Evaluate Modern Neural Retrieval Models? ArXiv, abs/2201.11086. Retrieved from https://arxiv.org/abs/2201.11086
References
Filter by:
Ogundepo, O., Zhang, X., Sun, S., Duh, K., & Lin, J. (2022). AfriCLIRMatrix: Enabling Cross-Lingual Information Retrieval for African Languages Presented at the AfriCLIRMatrix: Enabling Cross-Lingual Information Retrieval for African Languages conference. Retrieved from https://aclanthology.org/2022.emnlp-main.597
Lin, J. (2022). Building a Culture of Reproducibility in Academic Research ArXiv, abs/2212.13534. https://doi.org/10.48550/arXiv.2212.13534
Ma, X., Sun, K., Pradeep, R., Li, M., & Lin, J. (2022). Another Look at DPR: Reproduction of Training and Replication Of Retrieval Presented at the Another Look at DPR: Reproduction of Training and Replication Of Retrieval conference. https://doi.org/10.1007/978-3-030-99736-6_41
Ogundepo, O., Zhang, X., & Lin, J. (2022). Better Than Whitespace: Information Retrieval for Languages Without Custom Tokenizers ArXiv, abs/2210.05481. https://doi.org/10.48550/arXiv.2210.05481
Arabzadeh, N., Seifikar, M., & Clarke, C. (2022). Unsupervised Question Clarity Prediction Through Retrieved Item Coherency ArXiv, abs/2208.04882. https://doi.org/10.48550/arXiv.2208.04882
Li, H., Zhuang, S., Ma, X., Lin, J., & Zuccon, G. (2022). Pseudo-Relevance Feedback With Dense Retrievers in Pyserini Presented at the Pseudo-Relevance Feedback With Dense Retrievers in Pyserini conference. https://doi.org/10.1145/3572960.3572982
Chopra, S., & Golab, L. (2022). Gender Differences in Early Career Performance Reviews: A Text Mining Study Presented at the Gender Differences in Early Career Performance Reviews: A Text Mining Study conference. Retrieved from http://ceur-ws.org/Vol-3135/darliap_paper3.pdf
Li, M., Lin, S.-C., Oguz, B., Ghoshal, A., Lin, J., Mehdad, Y., … Chen, X. (2022). CITADEL: Conditional Token Interaction via Dynamic Lexical Routing For Efficient and Effective Multi-Vector Retrieval ArXiv, abs/2211.10411. https://doi.org/10.48550/arXiv.2211.10411
Li, H., Wang, S., Zhuang, S., Mourad, A., Ma, X., Lin, J., & Zuccon, G. (2022). To Interpolate or Not to Interpolate: PRF, Dense and Sparse Retrievers ArXiv, abs/2205.00235. https://doi.org/10.48550/arXiv.2205.00235