AI-powered antenna revolutionizes bone fracture diagnosis
Waterloo Engineering researcher creates a new system to detect bone fractures that is fast, accurate and safe
By Media Relations
A University of Waterloo engineer has paired inexpensive wireless communication antennas with artificial intelligence (AI) to improve how doctors can detect bone fractures.
Determining bone fractures using traditional diagnostic methods such as x-rays, computed tomography (CT) scans, and magnetic resonance imaging (MRI) takes time — such equipment is not readily available in ambulances or primary care facilities and, with health care services in high demand, many people have to wait for an x-ray or scan once they arrive at the hospital.
The new system delivers a faster, safer, more portable and cost-effective alternative to what currently exists.
“Our method is safer because it doesn’t expose patients to radiation or interfere with any medical devices in their bodies,” said lead researcher Dr. Omar Ramahi, a professor in Waterloo’s Department of Electrical and Computer Engineering.
“It’s also easy to transport, making it suitable for all people and situations, from elite athletes on the field to elderly nursing home residents to unconscious emergency room patients.”
To read the full article, click here!