Rorseth, J., Godfrey, P., Golab, L., Kargar, M., Srivastava, D., & Szlichta, J. (2023). CREDENCE: Counterfactual Explanations for Document Ranking ArXiv, abs/2302.04983. https://doi.org/10.48550/arXiv.2302.04983
References
Filter by:
Tamber, M. S., Pradeep, R., & Lin, J. (2023). Scaling Down, LiTting Up: Efficient Zero-Shot Listwise Reranking With Seq2seq Encoder-Decoder Models ArXiv, abs/2312.16098. https://doi.org/10.48550/ARXIV.2312.16098
Huang, C., Xie, Y., Jiang, Z., Lin, J., & Li, M. (2023). Approximating Human-Like Few-Shot Learning With GPT-based Compression ArXiv, abs/2308.06942. https://doi.org/10.48550/arXiv.2308.06942
O\textquoterightHalloran, T., McManus, B., Harbison, A., Grossman, M., & Cormack, G. (2023). Technology-Assisted Review for Spreadsheets and Noisy Text Presented at the Technology-Assisted Review for Spreadsheets and Noisy Text conference. https://doi.org/10.1145/3573128.3609341
Faggioli, G., Dietz, L., Clarke, C., Demartini, G., Hagen, M., Hauff, C., … Wachsmuth, H. (2023). Perspectives on Large Language Models for Relevance Judgment ArXiv, abs/2304.09161. https://doi.org/10.48550/arXiv.2304.09161
Liu, C., Usta, A., Zhao, J., & Salihoglu, S. (2023). Governor: Turning Open Government Data Portals Into Interactive Databases Presented at the Governor: Turning Open Government Data Portals Into Interactive Databases conference. https://doi.org/10.1145/3544548.3580868
Tang, R., Zhang, X., Lin, J., & Türe, F. (2023). What Do Llamas Really Think? Revealing Preference Biases in Language Model Representations ArXiv, abs/2311.18812. https://doi.org/10.48550/ARXIV.2311.18812
Rorseth, J., Godfrey, P., Golab, L., Kargar, M., Srivastava, D., & Szlichta, J. (2023). CREDENCE: Counterfactual Explanations for Document Ranking ArXiv, abs/2302.04983. https://doi.org/10.48550/arXiv.2302.04983
Clarke, C., Diaz, F., & Arabzadeh, N. (2023). Preference-Based Offline Evaluation Presented at the Preference-Based Offline Evaluation conference. https://doi.org/10.1145/3539597.3572725
Tang, R., Zhang, X., Ma, X., Lin, J., & Türe, F. (2023). Found in the Middle: Permutation Self-Consistency Improves Listwise Ranking in Large Language Models ArXiv, abs/2310.07712. https://doi.org/10.48550/ARXIV.2310.07712