Ilyas, I., Lacerda, J. P., Li, Y., Minhas, U. F., Mousavi, A., Pound, J., … Sumanth, C. (2023). Growing and Serving Large Open-Domain Knowledge Graphs ArXiv, abs/2305.09464. https://doi.org/10.48550/arXiv.2305.09464
References
Filter by:
Esmaeilzadeh, A., Golab, L., & Taghva, K. (2023). InfoMoD: Information-Theoretic Model Diagnostics Presented at the Paper InfoMoD: Information-Theoretic Model Diagnostics conference. https://doi.org/10.1145/3603719.3603725
Thakur, N., Ni, J., Abrego, G. H. andez \, Wieting, J., Lin, J., & Cer, D. (2023). Leveraging LLMs for Synthesizing Training Data Across Many Languages In Multilingual Dense Retrieval ArXiv, abs/2311.05800. https://doi.org/10.48550/ARXIV.2311.05800
Buchanan, G. R., McKay, D., & Clarke, C. (2023). Made to Measure: A Workshop on Human-Centred Metrics for Information Seeking Presented at the Made to Measure: A Workshop on Human-Centred Metrics for Information Seeking conference. https://doi.org/10.1145/3576840.3578301
Mackenzie, J., Trotman, A., & Lin, J. (2023). Efficient Document-at-a-Time and Score-at-a-Time Query Evaluation For Learned Sparse Representations ACM Transactions on Information Systems (TOIS), 41, 1-96. https://doi.org/10.1145/3576922
Pradeep, R., Chen, H., Gu, L., Tamber, M. S., & Lin, J. (2023). PyGaggle: A Gaggle of Resources for Open-Domain Question Answering Presented at the PyGaggle: A Gaggle of Resources for Open-Domain Question Answering conference. https://doi.org/10.1007/978-3-031-28241-6_10
Ma, X., Teofili, T., & Lin, J. (2023). Anserini Gets Dense Retrieval: Integration of Lucene\textquoterights HNSW Indexes ArXiv, abs/2304.12139. https://doi.org/10.48550/arXiv.2304.12139
Zeng, L., Zou, L., & Ozsu, T. (2023). SGSI - A Scalable GPU-Friendly Subgraph Isomorphism Algorithm IEEE Transactions on Knowledge and Data Engineering (TKDE), 35, 11899-11916. https://doi.org/10.1109/TKDE.2022.3230744
Lin, S.-C., Asai, A., Li, M., Oguz, B., Lin, J., Mehdad, Y., … Chen, X. (2023). How to Train Your Dragon: Diverse Augmentation Towards Generalizable Dense Retrieval Presented at the How to Train Your Dragon: Diverse Augmentation Towards Generalizable Dense Retrieval conference. Retrieved from https://aclanthology.org/2023.findings-emnlp.423
Li, M., Zhuang, H., Hui, K., Qin, Z., Lin, J., Jagerman, R., … Bendersky, M. (2023). Generate, Filter, and Fuse: Query Expansion via Multi-Step Keyword Generation for Zero-Shot Neural Rankers ArXiv, abs/2311.09175. https://doi.org/10.48550/ARXIV.2311.09175