Kassaie, B., & Tompa, F. (2023). Autonomously Computable Information Extraction Proceedings of the VLDB Endowment (PVLDB), 16, 2431-2443. https://doi.org/10.14778/3603581.3603585
References
Filter by:
Chen, H., Lassance, C., & Lin, J. (2023). End-to-End Retrieval With Learned Dense and Sparse Representations Using Lucene ArXiv, abs/2311.18503. https://doi.org/10.48550/ARXIV.2311.18503
Lin, J., Alfonso-Hermelo, D., Jeronymo, V., Kamalloo, E., Lassance, C., Nogueira, R. F., … Zhang, X. (2023). Simple Yet Effective Neural Ranking and Reranking Baselines for Cross-Lingual Information Retrieval ArXiv, abs/2304.01019. https://doi.org/10.48550/arXiv.2304.01019
Adeyemi, M., Oladipo, A., Zhang, X. C., Alfonso-Hermelo, D., Rezagholizadeh, M., Chen, B., & Lin, J. (2023). Overview of the CIRAL Track at FIRE 2023: Cross-Lingual Information Retrieval for African Languages Presented at the CIRAL Track at FIRE 2023: Cross-Lingual Information Retrieval for African Languages conference. Retrieved from https://ceur-ws.org/Vol-3681/T2-1.pdf
Esmaeilzadeh, A., Golab, L., & Taghva, K. (2023). InfoMoD: Information-Theoretic Model Diagnostics Presented at the Paper InfoMoD: Information-Theoretic Model Diagnostics conference. https://doi.org/10.1145/3603719.3603725
Qian, K., Belyi, A., Wu, F., Khorshidi, S., Nikfarjam, A., Khot, R., … Li, Y. (2023). Open Domain Knowledge Extraction for Knowledge Graphs ArXiv, abs/2312.09424. https://doi.org/10.48550/ARXIV.2312.09424
Buchanan, G. R., McKay, D., & Clarke, C. (2023). Made to Measure: A Workshop on Human-Centred Metrics for Information Seeking Presented at the Made to Measure: A Workshop on Human-Centred Metrics for Information Seeking conference. https://doi.org/10.1145/3576840.3578301
Sheshbolouki, A., & Ozsu, T. (2023). sGrow: Explaining the Scale-Invariant Strength Assortativity of Streaming Butterflies ACM Transactions on the Web, 17, 1-24. https://doi.org/10.1145/3572408
Pradeep, R., Chen, H., Gu, L., Tamber, M. S., & Lin, J. (2023). PyGaggle: A Gaggle of Resources for Open-Domain Question Answering Presented at the PyGaggle: A Gaggle of Resources for Open-Domain Question Answering conference. https://doi.org/10.1007/978-3-031-28241-6_10
Lin, S.-C., & Lin, J. (2023). A Dense Representation Framework for Lexical and Semantic Matching ACM Transactions on Information Systems (TOIS), 41, 1-110. https://doi.org/10.1145/3582426