Yang, J.-H., Lassance, C., de Rezende, R. S., Srinivasan, K., Redi, M., Clinchant, S. ephane, & Lin, J. (2023). AToMiC: An Image/Text Retrieval Test Collection to Support Multimedia Content Creation ArXiv, abs/2304.01961. https://doi.org/10.48550/arXiv.2304.01961
References
Filter by:
Ehrlinger, L., Harmouch, H., Ilyas, I., & Naumann, F. (2023). Preface QDB Presented at the Paper Preface QDB conference. Retrieved from https://ceur-ws.org/Vol-3462/QDB0.pdf
Hebert, L., Chen, H. Y., Cohen, R., & Golab, L. (2023). Qualitative Analysis of a Graph Transformer Approach to Addressing Hate Speech: Adapting to Dynamically Changing Content ArXiv, abs/2301.10871. https://doi.org/10.48550/arXiv.2301.10871
Lin, S.-C., & Lin, J. (2023). A Dense Representation Framework for Lexical and Semantic Matching ACM Transactions on Information Systems (TOIS), 41, 1-110. https://doi.org/10.1145/3582426
Lin, S.-C., Asai, A., Li, M., Oguz, B., Lin, J., Mehdad, Y., … Chen, X. (2023). How to Train Your Dragon: Diverse Augmentation Towards Generalizable Dense Retrieval Presented at the How to Train Your Dragon: Diverse Augmentation Towards Generalizable Dense Retrieval conference. Retrieved from https://aclanthology.org/2023.findings-emnlp.423
Faggioli, G., Dietz, L., Clarke, C., Demartini, G., Hagen, M., Hauff, C., … Wachsmuth, H. (2023). Perspectives on Large Language Models for Relevance Judgment ArXiv, abs/2304.09161. https://doi.org/10.48550/arXiv.2304.09161
Hebert, L., Golab, L., Poupart, P., & Cohen, R. (2023). FedFormer: Contextual Federation With Attention in Reinforcement Learning Presented at the FedFormer: Contextual Federation With Attention in Reinforcement Learning conference. https://doi.org/10.5555/3545946.3598716
Kassaie, B., & Tompa, F. (2023). Autonomously Computable Information Extraction Proceedings of the VLDB Endowment (PVLDB), 16, 2431-2443. https://doi.org/10.14778/3603581.3603585
Akiki, C., Ogundepo, O., Piktus, A., Zhang, X., Oladipo, A., Lin, J., & Potthast, M. (2023). Spacerini: Plug-and-Play Search Engines With Pyserini and Hugging Face Presented at the Spacerini: Plug-and-Play Search Engines With Pyserini and Hugging Face conference. Retrieved from https://aclanthology.org/2023.emnlp-demo.12
Li, M., Lin, S.-C., Ma, X., & Lin, J. (2023). SLIM: Sparsified Late Interaction for Multi-Vector Retrieval With Inverted Indexes ArXiv, abs/2302.06587. https://doi.org/10.48550/arXiv.2302.06587