Articles in Scientific Journals
-
Fampa, M.; LUBKE, D.; WANG, F.; WOLKOWICZ, H. Parametric Convex Quadratic Relaxation of the Quadratic Knapsack Problem. European Journal of Operational Research, v. 1, p. 1, 2020.
https://doi.org/10.1016/j.ejor.2019.08.027
This paper was elected highlighted article of the European Journal of Operational Research in January 2020: https://www.journals.elsevier.com/european-journal-of-operational-research/highlighted-articles/ejor-editors-choice-articles-january-2020 - LUBKE, DANIELA CRISTINA; XAVIER, VINICIUS LAYTER; VENCESLAU, HELDER MANOEL; XAVIER, ADILSON ELIAS. Flying elephants method applied to the problem of covering solid bodies with spheres, Int. J. Metaheuristics, Vol. 7, No. 1, 2018. https://doi.org/10.1504/IJMHEUR.2018.091868
- VENCESLAU, HELDER MANOEL; LUBKE, DANIELA CRISTINA; XAVIER, ADILSON ELIAS. Optimal covering of solid bodies by spheres via the hyperbolic smoothing technique, Optimization Methods and Software, v. 1, p. 1-13, 2014. https://doi.org/10.1080/10556788.2014.934686
Summary published in proceedings of conferences
-
LUBKE, D.; Fukasawa R; Ricardez-Sandoval L. Integration of machine scheduling and personnel allocation for an industrial-scale analytical services facility. 9th International Conference on Control, Decision and Information Technologies (CoDIT), 2023, 1647–1652,
https://doi.org/10.1109/CoDIT58514.2023.10284382 - Fampa, Marcia; LUBKE, DANIELA CRISTINA; Wang, Fei; Wolkowicz, Henry. Extending cover inequalities for the quadratic knapsack problem to relaxations in lifted space. XIX Latin-Iberoamerican Conference on Operations Research - CLAIO 2018. http://www.sopios.org.pe/static/claio/proceeding.pdf
- M. Fampa, D. Lubke, F. Wang, H. Wolkowicz, “Convexification of the Quadratic Knapsack Problem with Integrated Cut Strengthening”. Oberwolfach Reports 26 (2019),pp. 19-21. (Proceedings of the workshop on Mixed-integer Nonlinear Optimization: ahatchery for modern mathematics, Mathematisches Forschungsinstitut, Oberwolfach, Germany, 2019). DOI: 10.4171/OWR/2019/26
- VENCESLAU, HELDER MANOEL; LUBKE, DANIELA CRISTINA; XAVIER, ADILSON ELIAS. The Hyperbolic Smoothing Technique applied to the covering of three dimensional bodies by spheres, 2014, Perpignan, France, June 26-28, Book of Abstracts of EUROPT-2014, v. 1. p. 33-33.
- XAVIER, A. E. ; OLIVEIRA, A. A. F. ; LUBKE, D. C. ; XAVIER, V. L. Optimal Covering of a Solid Body via Hyperbolic Smoothing Technique, 2013, Florence, Italy, June 26-28, Annals EUROPT 2013. v. 1. p. 31-31.
Papers presented at conferences
- COSTA, M.; FAMPA, M.; LUBKE, D. C.; Upper bounds for the binary quadratic knapsack problem, Publicado em anais do XLVII Simpósio Brasileiro de Pesquisa Operacional, 2015, Porto de Galinhas, Pernambuco. http://www.din.uem.br/sbpo/sbpo2015/pdf/142864.pdf
- LUBKE, DANIELA CRISTINA; VENCESLAU, HELDER MANOEL; XAVIER, ADILSON ELIAS. Solution of the Problem of Covering Solid Bodies by Spheres using the Hyperbolic Smoothing Technique, Publicado em anais do XLVI Simpósio Brasileiro de Pesquisa Operacional, 2014, Salvador, Bahia. v.1 p. 2686-2694. http://www.din.uem.br/sbpo/sbpo2014/pdf/arq0388.pdf
- LUBKE, D. C.; XAVIER, A. E.; OLIVEIRA, A. A. F.; XAVIER, V. L. Cobertura de corpos por esferas utilizando suavização hiperbólica. Publicado em anais do XLV Simpósio Brasileiro de Pesquisa Operacional, 2013, Natal. v.1 p. 2658-2665. http://www.din.uem.br/sbpo/sbpo2013/pdf/arq0295.pdf
Ph.D. Thesis (in Portuguese)
- LUBKE, D. CONVEX RELAXATION AND VALID INEQUALITIES OF THE BINARY QUADRATIC KNAPSACK PROBLEM 2019. https://www.cos.ufrj.br/uploadfile/publicacao/2893.pdf
M.Sc. Dissertation (in Portuguese)
- LUBKE, D. OPTIMAL COVERING OF SOLID BODIES BY SPHERES VIA HYPERBOLIC SMOOTHING TECHNIQUE 2014. https://www.cos.ufrj.br/uploadfile/1394623478.pdf