Publications

Search
Author Title Type [ Year(Desc)]
2016
Pong, T. K. , Sun, H. , Wang, N. , & Wolkowicz, H. . (2016). Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem. Computational Optimization and Applications, 63, 333-364.
Pong, T. K. , Sun, H. , Wang, N. , & Wolkowicz, H. . (2016). Computational Optimization and Applications. Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84957839239&partnerID=MN8TOARS
2020
Geelen, J. , & Sun, H. . (2020). A proof of Rado's Theorem via principal extension. Advances in Applied Mathematics.
Geelen, J. , & Sun, H. . (2020). Advances in Applied Mathematics. A proof of Rado's Theorem via principal extension. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85080051198&partnerID=MN8TOARS
2021
Göke, A. , Koenemann, J. , Mnich, M. , & Sun, H. . (2021). Hitting Weighted Even Cycles in Planar Graphs. In APPROX-RANDOM.
Sun, H. . (2021). An Improved Approximation Bound for Minimum Weight Dominating Set on Graphs of Bounded Arboricity. In Approximation and Online Algorithms (pp. 39–47). Springer International Publishing. doi:10.1007/978-3-030-92702-8_3
Li, X. , Pong, T. Kei, Sun, H. , & Wolkowicz, H. . (2021). A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem. Computational Optimization and Applications, 78, 853–891. jan, Springer Science and Business Media LLC. doi:10.1007/s10589-020-00261-4
Approximation and Online Algorithms. (2021). An Improved Approximation Bound for Minimum Weight Dominating Set on Graphs of Bounded Arboricity. Retrieved from http://dx.doi.org/10.1007/978-3-030-92702-8_3
APPROX-RANDOM. (2021). Hitting Weighted Even Cycles in Planar Graphs.
Computational Optimization and Applications. (2021). A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem. Retrieved from http://dx.doi.org/10.1007/s10589-020-00261-4
2022
Göke, A. , Koenemann, J. , Mnich, M. , & Sun, H. . (2022). Hitting Weighted Even Cycles in Planar Graphs. SIAM Journal on Discrete Mathematics, 36, 2830–2862. nov, Society for Industrial & Applied Mathematics (SIAM). doi:10.1137/21m144894x
Göke, A. , Koenemann, J. , Mnich, M. , & Sun, H. . (2022). SIAM Journal on Discrete Mathematics. Hitting Weighted Even Cycles in Planar Graphs. Retrieved from https://doi.org/10.1137/21M144894X
2023
Sun, H. . (2023). A Constant Factor Approximation for Directed Feedback Vertex Set in Graphs of Bounded Genus. A Constant Factor Approximation for Directed Feedback Vertex Set in Graphs of Bounded Genus.