Publications

Search
Author Title Type [ Year(Desc)]
2021
Jahangir, M. Sina, & Quilty, J. . (2021). Improving hydrological forecasts through temporal hierarchal reconciliation. EGU General Assembly 2021. Retrieved from https://meetingorganizer.copernicus.org/EGU21/EGU21-13303.html
Quilty, J. M. , & Sikorska-Senoner, A. E. . (2021). Learning from one’s errors: A data-driven approach for mimicking an ensemble of hydrological model residuals. EGU General Assembly 2021. Retrieved from https://meetingorganizer.copernicus.org/EGU21/EGU21-13244.html
Barzegar, R. , Adamowski, J. , & Quilty, J. . (2021). Improving Deep Learning hydrological time series modeling using Gaussian Filter preprocessing. EGU General Assembly 2021. Retrieved from https://meetingorganizer.copernicus.org/EGU21/EGU21-1644.html
Rezaali, M. , Quilty, J. , & Karimi, A. . (2021). Probabilistic urban water demand forecasting using wavelet-based machine learning models. Journal of Hydrology, 126358. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0022169421004054
Sikorska-Senoner, A. E. , & Quilty, J. M. . (2021). A novel ensemble-based conceptual-data-driven approach for improved streamflow simulations. Environmental Modelling & Software, 105094. Retrieved from https://www.sciencedirect.com/science/article/pii/S1364815221001377
Barzegar, R. , Razzagh, S. , Quilty, J. , Adamowski, J. , Pour, H. K. , & Booij, M. J. . (2021). Improving GALDIT-based groundwater vulnerability predictive mapping using coupled resampling algorithms and machine learning models. Journal of Hydrology, 598, 126370. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0022169421004170
Quilty, J. , & Adamowski, J. . (2021). A maximal overlap discrete wavelet packet transform integrated approach for rainfall forecasting–A case study in the Awash River Basin. Environmental Modelling & Software, 105119. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S1364815221001626
2023
Jahangir, M. S. , You, J. , & Quilty, J. . (2023). A quantile-based encoder-decoder framework for multi-step ahead runoff forecasting. Journal of Hydrology, 619, 129269. Retrieved from https://www.sciencedirect.com/science/article/pii/S0022169423002111
Quilty, J. , Jahangir, M. S. , You, J. , Hughes, H. , Hah, D. , & Tzoganakis, I. . (2023). Bayesian extreme learning machines for hydrological prediction uncertainty. Journal of Hydrology, 626, 130138. Retrieved from https://www.sciencedirect.com/science/article/pii/S0022169423010806

Pages