While previous studies have improved our understanding of peatland carbon dynamics during the growing season, few have tried to predict CO2 emissions during the NGS in remote cold regions. Those that have tend to show that these areas are contributing significantly to annual ecosystem carbon budgets. Despite this, these studies were still not able to predict how NGS CO2 emissions from northern peatlands will change under an evolving and uncertain 21st century climate.
As an undergraduate student at the University of Waterloo, I was grateful for the opportunity to work on such a unique project, and to be the lead author of an article that is published in such a highly impactful journal.” said Arash Rafat.
The study has implications for future climate policy. Even under the lowest radiative forcing scenario, the Mer Bleue Bog will act as a source of CO2 during the NGS throughout the remainder of the 21st century, reinforcing the hypothesis that climate warming has the potential to increase peatland CO2 emissions during the NGS across various northern regions from around the world.
The study was part of the “Winter Carbon Losses in Wetland Ecosystems under Current and Future Climates” project within the “Advancing Climate Change Science in Canada” initiative funded jointly by Environment and Climate Change Canada, Natural Sciences and Engineering Research Council (NSERC), and Health Canada. Future work will look to investigate the influence of climate warming on different peatland types (fens, swamps, marshes) across various cold-region landscapes. Results of this work will be integrated into the Canadian Model for Peatlands (CaMP) to improve national estimates of net ecosystem exchanges and carbon emissions during the NGS.
This research was funded by the Canada Excellence Research Chair (CERC) in Ecohydrology, the Advancing climate Change Science in Canada program, the Winter Soil Processes in Transition project within Global Water Futures and a Natural Sciences and Engineering Research Council (NSERC) Discovery Grant.