PhD Seminar: Beyond LIF: The Computational Power of Passive Dendritic Trees
Andreas Stöckel, PhD candidate
David R. Cheriton School of Computer Science
The artificial neurons typically employed in machine learning and computational neuroscience bear little resemblance to biological neurons. They are often derived from the “leaky integrate and fire” (LIF) model, neglect spatial extent, and assume a linear combination of input variables. It is well known that these simplifications have a profound impact on the family of functions that can be computed in a single-layer neural network.