Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Tuesday, July 24, 2018 2:00 pm - 2:00 pm EDT (GMT -04:00)

PhD Seminar: Gradient-based Filter Design for the Dual-tree Wavelet Transform

Daniel Recoskie, PhD candidate
David R. Cheriton School of Computer Science

The wavelet transform has seen success when incorporated into neural network architectures, such as in wavelet scattering networks. More recently, it has been shown that the dual-tree complex wavelet transform can provide better representations than the standard transform.

Royal Sequiera, Master’s candidate
David R. Cheriton School of Computer Science

With the advent of deep learning methods, researchers are abandoning decades-old work in Natural Language Processing (NLP). The research community has been increasingly moving away from otherwise dominant feature engineering approaches; rather, it is gravitating towards more complicated neural architectures. Highly competitive tools like Parts-of-Speech taggers that exhibit human-like accuracy are traded for complex networks, with the hope that the neural network will learn the features needed. In fact, there have been efforts to do NLP "from scratch" with neural networks that altogether eschew featuring engineering based tools (Collobert et al., 2011).

Vineet John, Master’s candidate
David R. Cheriton School of Computer Science

This thesis tackles the problem of disentangling the latent style and content variables in a language modelling context. This involves splitting the latent representations of documents by learning which features of a document are discriminative of its style and content, and encoding these features separately using neural network models.

Ricardo Salmon, PhD candidate
David R. Cheriton School of Computer Science

Stochastic satisfiability (SSAT), Quantified Boolean Satisfiability (QBF) and decision theoretic planning in infinite horizon partially observable Markov decision processes (POMDPs) are all PSPACE-Complete problems. Since they are all complete for the same complexity class, I show how to convert them into one another in polynomial time and space.

Irish Medina, Master’s candidate
David R. Cheriton School of Computer Science

Smart water meters have been installed across Abbotsford, British Columbia, Canada, to measure the water consumption of households in the area. Using this water consumption data, we develop machine learning and deep learning models to predict daily water consumption for existing multi-family residences. We also present a new methodology for predicting the water consumption of new housing developments. 

Monday, September 24, 2018 1:30 pm - 1:30 pm EDT (GMT -04:00)

Master’s Thesis Presentation: On the Computational Complexity of Center-based Clustering

Nicole McNabb, Master’s candidate
David R. Cheriton School of Computer Science

Clustering is the task of partitioning data so that “similar” points are grouped together and “dissimilar” ones are separated. In general, this is an ill-defined task. One way to make clustering well-defined is to introduce a clustering objective to optimize. While many common objectives such as k-means are known to be NP-hard, heuristics output “nice” clustering solutions efficiently in practice. This work analyzes two avenues of theoretical research that attempt to explain this discrepancy.

Tuesday, September 25, 2018 1:00 pm - 1:00 pm EDT (GMT -04:00)

PhD Defence: Learning Sparse Orthogonal Wavelet Filters

Daniel Recoskie, PhD candidate
David R. Cheriton School of Computer Science

The wavelet transform is a well-studied and understood analysis technique used in signal processing. In wavelet analysis, signals are represented by a sum of self-similar wavelet and scaling functions. Typically, the wavelet transform makes use of a fixed set of wavelet functions that are analytically derived. We propose a method for learning wavelet functions directly from data. We impose an orthogonality constraint on the functions so that the learned wavelets can be used to perform both analysis and synthesis. We accomplish this by using gradient descent and leveraging existing automatic differentiation frameworks. Our learned wavelets are able to capture the structure of the data by exploiting sparsity. We show that the learned wavelets have similar structure to traditional wavelets.

Carolyn Lamb, PhD candidate
David R. Cheriton School of Computer Science

This thesis is driven by the question of how computers can generate poetry, and how that poetry can be evaluated. We survey existing work on computer-generated poetry and interdisciplinary work on how to evaluate this type of computer-generated creative product. 

Ben Armstrong, Master’s candidate
David R. Cheriton School of Computer Science

Understanding the factors causing groups to engage in coordinating behaviour has been an active research area for decades. In this thesis, we study this problem using a novel dataset of crowd behaviour from an online experiment hosted by Reddit.