Master's Thesis Presentation: Exploring New Forms of Random Projections for Prediction and Dimensionality Reduction in Big-Data Regimes
Speaker: Amir-Hossein Karimi, Master’s candidate
The story of this work is dimensionality reduction. Dimensionality reduction is a method that takes as input a point-set P of n points in \(R^d\) where d is typically large and attempts to find a lower-dimensional representation of that dataset, in order to ease the burden of processing for down-stream algorithms. In today’s landscape of machine learning, researchers and practitioners work with datasets that either have a very large number of samples and/or include high-dimensional samples. Therefore, dimensionality reduction is applied as a pre-processing technique primarily to overcome the curse of dimensionality.