Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:

Ben Armstrong, Master’s candidate
David R. Cheriton School of Computer Science

Understanding the factors causing groups to engage in coordinating behaviour has been an active research area for decades. In this thesis, we study this problem using a novel dataset of crowd behaviour from an online experiment hosted by Reddit.

Brandon Alcox, Master’s candidate
David R. Cheriton School of Computer Science

This thesis investigates the application of various fields of artificial intelligence to the domain of sports management and analysis. The research in this thesis is primarily focused on the entry draft for the National Hockey League, though many of the models proposed may be applied to other sports and leagues with minimal adjustments. 

Adam Schunk, Master’s candidate
David R. Cheriton School of Computer Science

Over the past years online social networks have become a major target for marketing strategies, generating a need for methods to efficiently spread information through these networks. Close-knit communities have developed on these platforms through groups of users connecting with likeminded individuals. 

Friday, April 5, 2019 10:00 am - 10:00 am EDT (GMT -04:00)

Master’s Thesis Presentation: End-to-end Neural Information Retrieval

Wei Yang, Master’s candidate
David R. Cheriton School of Computer Science

In recent years, we have witnessed many successes of neural networks in the information retrieval community with lots of labeled data. Yet it remains unknown whether the same techniques can be easily adapted to search social media posts where the text is much shorter. In addition, we find that most neural information retrieval models are compared against weak baselines. 

In this thesis, we build an end-to-end neural information retrieval system using two toolkits: Anserini and MatchZoo. In addition, we also propose a novel neural model to capture the relevance of short and varied tweet text, named MP-HCNN. 

Friday, May 17, 2019 11:00 am - 11:00 am EDT (GMT -04:00)

Master’s Essay Presentation: Applications of Deconvolution Network, SPN and ELMo

Joshua Cheng, Master’s candidate
David R. Cheriton School of Computer Science

In this paper, we are going to explore the possibility to apply deconvolution network, sum-product network and contextualized word embeddings (ELMo) on learning encoded sentence representation and sentiment identification.

Yingluo Xun, Master’s candidate
David R. Cheriton School of Computer Science

In reinforcement learning, entropy-regularized value function (in policy space) has attracted a lot of attention recently due to its effect on smoothing the value function, and the effect on encouraging exploration. However, there is a discrepancy between the regularized objective function and the original objective function in existing methods, which would potentially result in a discrepancy between the trained policy and the optimal policy, as the policy directly depends on the value function in the reinforcement learning framework. 

Matthew Angus, Master’s candidate
David R. Cheriton School of Computer Science

There exists wide research surrounding the detection of out of distribution sample for image classification. Safety critical applications, such as autonomous driving, would benefit from the ability to localise the unusual objects causing an image to be out of distribution. 

Rahul Iyer, Master’s candidate
David R. Cheriton School of Computer Science

Social interactions in the form of discussion are an indispensable part of collaborative software development. The discussions are essential for developers to share their views and to form a strong relationship with other teammates. These discussions invoke both positive and negative emotions such as joy, love, aggression, and disgust. Additionally, developers also exhibit hidden behaviors that dictate their personality. Some developers can be supportive and open to new ideas, whereas others can be conservative. Past research has shown that the personality of the developers has a significant role in determining the success of the task they collaboratively perform.

Jonathan Vi Perrie, Master’s candidate
David R. Cheriton School of Computer Science

Over the years, hit song science has been a controversial topic within music information retrieval (MIR). Researchers have debated whether an unbiased dataset can be constructed and what it means to successfully model song performance. Often classes for modelling are derived from one component of song performance, like for example, a song's peak position on some chart. 

Alexander Sachs, Master’s candidate
David R. Cheriton School of Computer Science

GitHub is an excellent democratic source of software. Unlike traditional work groups however, GitHub repositories are primarily anonymous and virtual. Traditional strategies for improving the productivity of a work group often include external consultation agencies that do in-person interviews. The resulting data from these interviews are then reviewed and their recommendations provided. In the online world however, where colleagues are often anonymous and geographically dispersed, it is often impossible to apply such approaches.