Privacy Protection and Authentication Mechanisms for Radio frequency identification (RFID) Systems


Radio frequency identification (RFID) is a technology for the automated identification of physical entities using radio frequency transmissions. Typically, RFID systems consist of RFID devices or so called tags, RFID readers or interrogators, and backend networks. An RFID tag is a simple and low-cost electronic device (transponder) that is attached to a physical object for wireless data transmission. It transmits data over the air in response to interrogation by an RFID reader. An RFID reader is a more powerful device (transceiver) that can queue data stored in tags. Multiple readers can then connect to a network that acts as a data processing subsystem and database. In the past ten years, RFID systems have gained popularity in many applications, such as supply chain management, library systems, e-passports, contactless cards (e.g., proximity cards, automated toll-payment transponders, and payment tokens), identification systems, and human implantation (such as medical-record indexing, and physical access control). Future applications could include smart appliances, shopping, and medication compliance monitoring. RFID is one of the most promising technologies in the field of ubiquitous and pervasive computing. Many new applications can be created by embedding an object with RFID tags. However, the rapid development of RFID systems raises serious privacy and security concerns that could prevent the benefits of RFID technology from being fully utilized.

The concerns about RFID systems arise from a) privacy concerns of users about clandestine physical tracking and inventorying of tags; b) authentication problems from counterfeit or cloned tags; and c) communication attacks: jamming, traffic analysis, spoofing, eavesdropping, relay or man-in-the-middle attacks, denial of service attacks, and side-channel attacks, all of which are easy to launch for both RFID tags and readers. Overcoming these concerns will be a significant challenge, because RFID tags do not have sufficient computational power and memory capacity to support standard cryptographic primitives.

Research topics

  • Physical layer assisted privacy protection in RFID systems
  • Lightweight crypto engine based core security functions for FRID Security
Last updated: July 09, 2019