Publications

Search
Author Title Type [ Year(Asc)]
2009
Layton, A. T. , Toyama, Y. , Yang, G. - Q. , Edwards, G. S. , Kiehart, D. P. , & Venakides, S. . (2009). Drosophila morphogenesis: tissue force laws and the modeling of dorsal closure. HFSP journal, 3, 441–460. Taylor & Francis.
Layton, A. T. , Moore, L. C. , & Layton, H. E. . (2009). Multistable dynamics mediated by tubuloglomerular feedback in a model of coupled nephrons. Bulletin of mathematical biology, 71, 515. Springer-Verlag.
Layton, A. T. , Layton, H. E. , Dantzler, W. H. , & Pannabecker, T. L. . (2009). The mammalian urine concentrating mechanism: hypotheses and uncertainties. Physiology, 24, 250–256. American Physiological Society.
Chen, J. , Layton, A. T. , & Edwards, A. . (2009). A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results. American Journal of Physiology-Renal Physiology, 297, F517–F536. American Physiological Society.
Chen, J. , Edwards, A. , & Layton, A. T. . (2009). A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture. American Journal of Physiology-Renal Physiology, 297, F537–F548. American Physiological Society.
2008
Layton, A. T. . (2008). An efficient numerical method for the two-fluid Stokes equations with a moving immersed boundary. Computer methods in applied mechanics and engineering, 197, 2147–2155. North-Holland.
Fogelson, A. , X WANG, S. H. E. L. D. O. N. , & Liu, W. - K. . (2008). Immersed Boundary Method and Its Extensions. Computer methods in applied mechanics and engineering, 197.
Layton, H. E. , Moore, L. C. , & Layton, A. T. . (2008). Tubuloglomerular feedback signal transduction in a model of a compliant thick ascending limb. Federation of American Societies for Experimental Biology.
Pannabecker, T. Lloyd, Dantzler, W. H. , Layton, A. T. , & Layton, H. E. . (2008). Three-dimensional reconstructions of rat renal inner medulla suggest two anatomically separated countercurrent mechanisms for urine concentration. Federation of American Societies for Experimental Biology.
Layton, A. T. . (2008). An efficient numerical method for the two-fluid Stokes equations with a moving immersed boundary. Computer Methods in Applied Mechanics and Engineering, 197, 2147–2155. North-Holland.
Layton, A. T. . (2008). On the choice of correctors for semi-implicit Picard deferred correction methods. Applied Numerical Mathematics, 58, 845–858. Elsevier.
Pannabecker, T. L. , Dantzler, W. H. , Layton, H. E. , & Layton, A. T. . (2008). Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla. American Journal of Physiology-Renal Physiology, 295, F1271–F1285. American Physiological Society.
2007
Marcano, M. , Layton, A. T. , & Layton, H. E. . (2007). Maximum Urine Concentrating Capability for Transport Parameters and Urine Flow within Prescribed Ranges. The Federation of American Societies for Experimental Biology.
Layton, H. E. , Layton, A. T. , & Moore, L. C. . (2007). A mechanism for the generation of harmonics in oscillations mediated by tubuloglomerular feedback. The Federation of American Societies for Experimental Biology.
Layton, H. E. , Layton, A. T. , & Moore, L. C. . (2007). A mechanism for the generation of harmonics in oscillations mediated by tubuloglomerular feedback. Federation of American Societies for Experimental Biology.
Marcano, M. , Layton, A. T. , & Layton, H. E. . (2007). Maximum Urine Concentrating Capability for Transport Parameters and Urine Flow within Prescribed Ranges. Federation of American Societies for Experimental Biology.
Layton, A. T. . (2007). Role of UTB urea transporters in the urine concentrating mechanism of the rat kidney. Bulletin of mathematical biology, 69, 887–929. Springer-Verlag.
Layton, A. , & Minion, M. . (2007). Implications of the choice of predictors for semi-implicit Picard integral deferred correction methods. Communications in Applied Mathematics and Computational Science, 2, 1–34. Mathematical Sciences Publishers.
Beale, T. , & Layton, A. . (2007). On the accuracy of finite difference methods for elliptic problems with interfaces. Communications in Applied Mathematics and Computational Science, 1, 91–119. Mathematical Sciences Publishers.
2006
Layton, A. T. . (2006). Modeling water transport across elastic boundaries using an explicit jump method. SIAM Journal on Scientific Computing, 28, 2189–2207. Society for Industrial and Applied Mathematics.

Pages