Publications

Search
Author [ Title(Desc)] Type Year
M
Ciocanel, M. V. , Jung, P. , Brown, A. , Panaggio, M. J. , Lazarus, L. , Topaz, C. M. , Xu, B. , et al. (2018). Maria-Veronica Ciocanel. Dynamical Systems, 17, 2855–2881.
Bell, W. , & Layton, A. T. . (2021). A Mathematical Model of Mitochondria in Proximal Tubule and Thick Ascending Limb Cells. bioRxiv, 2021–12. Cold Spring Harbor Laboratory.
Chen, J. , Layton, A. T. , & Edwards, A. . (2009). A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results. American Journal of Physiology-Renal Physiology, 297, F517–F536. American Physiological Society.
Chen, J. , Edwards, A. , & Layton, A. T. . (2009). A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture. American Journal of Physiology-Renal Physiology, 297, F537–F548. American Physiological Society.
Stadt, M. M. , Leete, J. , Devinyak, S. , & Layton, A. T. . (2022). A mathematical model of potassium homeostasis: Effect of feedforward and feedback controls. PLOS Computational Biology, 18, e1010607. Public Library of Science San Francisco, CA USA.
Layton, H. E. , Chen, J. , Moore, L. C. , & Layton, A. T. . (2010). A mathematical model of the afferent arteriolar smooth muscle cell. The FASEB Journal, 24, 1059–27. Federation of American Societies for Experimental Biology.
Chen, J. , Sgouralis, I. , Moore, L. C. , Layton, H. E. , & Layton, A. T. . (2011). A mathematical model of the myogenic response to systolic pressure in the afferent arteriole. American Journal of Physiology-Renal Physiology, 300, F669–F681. American Physiological Society Bethesda, MD.
Layton, A. T. , & Layton, H. E. . (2002). A mathematical model of the urine concentrating mechanism in the outer medulla of the rat kidney. In FASEB JOURNAL (Vol. 16, pp. A51–A51). FEDERATION AMER SOC EXP BIOL 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA.
Layton, A. T. . (2011). A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture. American Journal of Physiology-Renal Physiology, 300, F372–F384. American Physiological Society Bethesda, MD.
Layton, A. T. . (2011). A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results. American Journal of Physiology-Renal Physiology, 300, F356–F371. American Physiological Society Bethesda, MD.
Layton, A. T. , & Layton, H. E. . (2005). A mathematical model of the urine concentrating mechanism of the inner medulla of the chinchilla kidney. In FASEB JOURNAL (Vol. 19, pp. A149–A149). FEDERATION AMER SOC EXP BIOL 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA.
Layton, A. T. , & Edwards, A. . (2014). Mathematical modeling in renal physiology. Springer Berlin.
Stadt, M. M. , & Layton, A. T. . (2023). Mathematical modeling of calcium homeostasis in female rats: An analysis of sex differences and maternal adaptations. Journal of Theoretical Biology, 572, 111583. Academic Press.
Layton, A. T. . (2013). Mathematical modeling of kidney transport. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 5, 557–573. John Wiley & Sons, Inc. Hoboken, USA.
Sgouralis, I. , & Layton, A. T. . (2015). Mathematical modeling of renal hemodynamics in physiology and pathophysiology. Mathematical biosciences, 264, 8–20. Elsevier.
Layton, A. T. . (2014). Mathematical modeling of urea transport in the kidney. Urea Transporters, 31–43. Springer Netherlands.
Layton, A. T. . (2020). Mathematical Modelling and Biomechanics of the Brain. SIAM PUBLICATIONS 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA.
Marcano, M. , Layton, A. T. , & Layton, H. E. . (2007). Maximum Urine Concentrating Capability for Transport Parameters and Urine Flow within Prescribed Ranges. The Federation of American Societies for Experimental Biology.
Marcano, M. , Layton, A. T. , & Layton, H. E. . (2010). Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney. Bulletin of mathematical biology, 72, 314–339. Springer-Verlag.
Layton, H. E. , Layton, A. T. , & Moore, L. C. . (2007). A mechanism for the generation of harmonics in oscillations mediated by tubuloglomerular feedback. The Federation of American Societies for Experimental Biology.

Pages