Publications

Search
Author [ Title(Desc)] Type Year
I
Pannabecker, T. L. , & Layton, A. T. . (2011). Isolated interstitial nodal spaces facilitate preferential solute and fluid mixing. Federation of American Societies for Experimental Biology.
Layton, A. T. , Gilbert, R. L. , & Pannabecker, T. L. . (2012). Isolated interstitial nodal spaces may facilitate preferential solute and fluid mixing in the rat renal inner medulla. American Journal of Physiology-Renal Physiology, 302, F830–F839. American Physiological Society Bethesda, MD.
Layton, A. T. , Gilbert, R. L. , & Pannabecker, T. L. . (2011). Isolated interstitial nodal spaces may facilitate preferential solute and fluid mixing in the rat renal inner medulla. American Journal of Physiology-Renal Physiology, 302, F830–F839. American Physiological Society Bethesda, MD.
K
S Thomas, R. , Layton, A. T. , Layton, H. E. , & Moore, L. C. . (2006). Kidney modeling: Status and perspectives. Proceedings of the IEEE, 94, 740–752. IEEE.
L
Robel, A. , & Layton, A. . (2009). The Lorenz Model.
M
Layton, A. T. , Layton, H. E. , Dantzler, W. H. , & Pannabecker, T. L. . (2009). The mammalian urine concentrating mechanism: hypotheses and uncertainties. Physiology, 24, 250–256. American Physiological Society.
Ciocanel, M. V. , Jung, P. , Brown, A. , Panaggio, M. J. , Lazarus, L. , Topaz, C. M. , Xu, B. , et al. (2018). Maria-Veronica Ciocanel. Dynamical Systems, 17, 2855–2881.
Chen, J. , Layton, A. T. , & Edwards, A. . (2009). A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results. American Journal of Physiology-Renal Physiology, 297, F517–F536. American Physiological Society.
Chen, J. , Edwards, A. , & Layton, A. T. . (2009). A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture. American Journal of Physiology-Renal Physiology, 297, F537–F548. American Physiological Society.
Layton, H. E. , Chen, J. , Moore, L. C. , & Layton, A. T. . (2010). A mathematical model of the afferent arteriolar smooth muscle cell. The FASEB Journal, 24, 1059–27. Federation of American Societies for Experimental Biology.
Layton, H. E. , Chen, J. , Moore, L. C. , & Layton, A. T. . (2010). A mathematical model of the afferent arteriolar smooth muscle cell. Federation of American Societies for Experimental Biology.
Chen, J. , Sgouralis, I. , Moore, L. C. , Layton, H. E. , & Layton, A. T. . (2011). A mathematical model of the myogenic response to systolic pressure in the afferent arteriole. American Journal of Physiology-Renal Physiology, 300, F669–F681. American Physiological Society Bethesda, MD.
Chen, J. , Sgouralis, I. , Moore, L. C. , Layton, H. E. , & Layton, A. T. . (2010). A mathematical model of the myogenic response to systolic pressure in the afferent arteriole. American Journal of Physiology-Renal Physiology, 300, F669–F681. American Physiological Society Bethesda, MD.
Layton, A. T. , & Layton, H. E. . (2002). A mathematical model of the urine concentrating mechanism in the outer medulla of the rat kidney. In FASEB JOURNAL (Vol. 16, pp. A51–A51). FEDERATION AMER SOC EXP BIOL 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA.
Layton, A. T. . (2011). A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture. American Journal of Physiology-Renal Physiology, 300, F372–F384. American Physiological Society Bethesda, MD.
Layton, A. T. . (2011). A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results. American Journal of Physiology-Renal Physiology, 300, F356–F371. American Physiological Society Bethesda, MD.
Layton, A. T. . (2010). A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture. American Journal of Physiology-Renal Physiology, 300, F372–F384. American Physiological Society Bethesda, MD.
Layton, A. T. . (2010). A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results. American Journal of Physiology-Renal Physiology, 300, F356–F371. American Physiological Society Bethesda, MD.
Layton, A. T. , & Layton, H. E. . (2005). A mathematical model of the urine concentrating mechanism of the inner medulla of the chinchilla kidney. In FASEB JOURNAL (Vol. 19, pp. A149–A149). FEDERATION AMER SOC EXP BIOL 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA.
Layton, A. T. , & Edwards, A. . (2014). Mathematical Modeling in Renal Physiology. Springer Berlin, Germany.

Pages