Publications

Search
Author Title Type [ Year(Asc)]
2014
Fry, B. , & Layton, A. . (2014). Structural organization of the renal medulla has a significant impact on oxygen distribution (890.11). The FASEB Journal, 28, 890–11. The Federation of American Societies for Experimental Biology.
Layton, A. T. , Edwards, A. , Layton, A. T. , & Edwards, A. . (2014). Transport across tubular epithelia. Mathematical Modeling in Renal Physiology, 155–183. Springer Berlin Heidelberg.
Layton, A. T. , Edwards, A. , Layton, A. T. , & Edwards, A. . (2014). Urine Concentration. Mathematical Modeling in Renal Physiology, 43–61. Springer Berlin Heidelberg.
Layton, A. T. , Edwards, A. , Layton, A. T. , & Edwards, A. . (2014). Counter-Current Exchange Across Vasa Recta. Mathematical Modeling in Renal Physiology, 63–83. Springer Berlin Heidelberg.
Layton, A. T. , Edwards, A. , Layton, A. T. , & Edwards, A. . (2014). Glomerular Filtration. Mathematical Modeling in Renal Physiology, 7–41. Springer Berlin Heidelberg.
Layton, A. T. . (2014). Impacts of Facilitated Urea Transporters on the Urine-Concentrating Mechanism in the Rat Kidney. Biological Fluid Dynamics: Modeling, Computations, and Applications, 628, 191. American Mathematical Soc.
Layton, A. T. , Edwards, A. , Layton, A. T. , & Edwards, A. . (2014). Solutions to Problem Sets. Mathematical Modeling in Renal Physiology, 185–218. Springer Berlin Heidelberg.
Herschlag, G. , Liu, J. - G. , & Layton, A. . (2014). An exact solution for Stokes flow in an infinite channel with permeable walls. In APS Division of Fluid Dynamics Meeting Abstracts (pp. D15–006).
Layton, A. T. , Edwards, A. , Layton, A. T. , & Edwards, A. . (2014). Tubuloglomerular Feedback. Mathematical Modeling in Renal Physiology, 85–106. Springer Berlin Heidelberg.
Layton, A. T. , & Olson, S. D. . (2014). Biological Fluid Dynamics: Modeling, Computations, and Applications. American Mathematical Society.
Ryu, H. , & Layton, A. T. . (2014). Feedback-mediated dynamics in a model of coupled nephrons with compliant short loop of Henle. Biological Fluid Dynamics: Modeling, Computations, and Applications, 628, 209. American Mathematical Soc.
Fry, B. C. , & Layton, A. T. . (2014). Oxygen transport in a cross section of the rat inner medulla: Impact of heterogeneous distribution of nephrons and vessels. Mathematical biosciences, 258, 68–76. Elsevier.
Olson, S. D. , & Layton, A. T. . (2014). Simulating biofluid-structure interactions with an immersed boundary framework–a review. Biological Fluid Dynamics: Modeling, Computations, and Applications, 628, 1. American Mathematical Soc.
Li, Y. , Sgouralis, I. , & Layton, A. T. . (2014). Computing viscous flow in an elastic tube. Numerical Mathematics: Theory, Methods and Applications, 7, 555–574. Cambridge University Press.
Layton, A. T. , & Edwards, A. . (2014). Mathematical modeling in renal physiology. Springer Berlin.
Edwards, A. , & Layton, A. T. . (2014). Calcium dynamics underlying the myogenic response of the renal afferent arteriole. American Journal of Physiology-Renal Physiology, 306, F34–F48. American Physiological Society.
Edwards, A. , Castrop, H. , Laghmani, K. , Vallon, V. , & Layton, A. T. . (2014). Effects of NKCC2 isoform regulation on NaCl transport in thick ascending limb and macula densa: a modeling study. American Journal of Physiology-Renal Physiology, 307, F137–F146. American Physiological Society Bethesda, MD.
Ryu, H. , & Layton, A. T. . (2014). Tubular fluid flow and distal NaCl delivery mediated by tubuloglomerular feedback in the rat kidney. Journal of mathematical biology, 68, 1023–1049. Springer Berlin Heidelberg.
Moss, R. , & Layton, A. T. . (2014). Dominant factors that govern pressure natriuresis in diuresis and antidiuresis: a mathematical model. American Journal of Physiology-Renal Physiology, 306, F952–F969. American Physiological Society Bethesda, MD.
Pannabecker, T. L. , & Layton, A. T. . (2014). Targeted delivery of solutes and oxygen in the renal medulla: role of microvessel architecture. American Journal of Physiology-Renal Physiology, 307, F649–F655. American Physiological Society Bethesda, MD.

Pages