Publications

Search
Author Title [ Type(Desc)] Year
Book Chapter
Layton, A. T. , & Hu, R. . (2020). Diabetes implications on kidneys. In Diabetes Systems Biology.
Layton, A. T. , & Edwards, A. . (2017). Introduction to Mathematical Modeling of Blood Flow Control in the Kidney. In Women in Mathematical Biology (pp. 63–73). Springer, Cham.
Sgouralis, I. , & Layton, A. T. . (2017). Modeling blood flow and oxygenation in a diabetic rat kidney. In Women in Mathematical Biology (pp. 101–113). Springer, Cham.
Layton, A. T. . (2017). Tracking the Distribution of a Solute Bolus in the Rat Kidney. In Women in Mathematical Biology (pp. 115–136). Springer, Cham.
Ciocanel, M. - V. , Stepien, T. L. , Edwards, A. , & Layton, A. T. . (2017). Modeling autoregulation of the afferent arteriole of the rat kidney. In Women in Mathematical Biology (pp. 75–100). Springer, Cham.
Arciero, J. , Ellwein, L. , Versypt, A. N. Ford, Makrides, E. , & Layton, A. T. . (2015). Modeling blood flow control in the kidney. In Applications of dynamical systems in biology and medicine (pp. 55–73). Springer, New York, NY.
Arciero, J. , Ellwein, L. , Versypt, A. N. Ford, Makrides, E. , & Layton, A. T. . (2015). Modeling blood flow control in the kidney. In Applications of Dynamical Systems in Biology and Medicine (pp. 55–73). Springer, New York, NY.
Layton, A. T. , & Edwards, A. . (2014). Electrophysiology of Renal Vascular Smooth Muscle Cells. In Mathematical Modeling in Renal Physiology (pp. 107–140). Springer, Berlin, Heidelberg.
Layton, A. T. , & Edwards, A. . (2014). Introduction: Basics of Kidney Physiology. In Mathematical Modeling in Renal Physiology (pp. 1–5). Springer, Berlin, Heidelberg.
Layton, A. T. , & Edwards, A. . (2014). Vasomotion and Myogenic Response of the Afferent Arteriole. In Mathematical Modeling in Renal Physiology (pp. 141–154). Springer, Berlin, Heidelberg.
Layton, A. T. . (2014). Mathematical Modeling of Urea Transport in the Kidney. In Urea Transporters (pp. 31–43). Springer, Dordrecht.
Layton, A. T. , & Edwards, A. . (2014). Transport Across Tubular Epithelia. In Mathematical Modeling in Renal Physiology (pp. 155–183). Springer, Berlin, Heidelberg.
Layton, A. T. , & Edwards, A. . (2014). Urine Concentration. In Mathematical Modeling in Renal Physiology (pp. 43–61). Springer, Berlin, Heidelberg.
Layton, A. T. , & Edwards, A. . (2014). Glomerular Filtration. In Mathematical Modeling in Renal Physiology (pp. 7–41). Springer, Berlin, Heidelberg.
Layton, A. T. , & Edwards, A. . (2014). Counter-Current Exchange Across Vasa Recta. In Mathematical Modeling in Renal Physiology (pp. 63–83). Springer, Berlin, Heidelberg.
Layton, A. T. , & Edwards, A. . (2014). Solutions to Problem Sets. In Mathematical Modeling in Renal Physiology (pp. 185–218). Springer, Berlin, Heidelberg.
Layton, A. T. , & Edwards, A. . (2014). Tubuloglomerular Feedback. In Mathematical Modeling in Renal Physiology (pp. 85–106). Springer, Berlin, Heidelberg.
Layton, A. T. . (2012). A velocity decomposition approach for solving the immersed interface problem with Dirichlet boundary conditions. In Natural Locomotion in Fluids and on Surfaces (pp. 263–269). Springer, New York, NY.
Layton, A. T. . (2012). A Velocity Decomposition Approach for Solving the Immersed Interface Problem with Dirichlet Boundary Conditions. In Natural Locomotion in Fluids and on Surfaces (pp. 263–269). Springer, New York, NY.
Layton, A. T. . (2012). A velocity decomposition approach for solving the immersed interface problem with dirichlet boundary conditions. In Natural Locomotion in Fluids and on Surfaces (pp. 263–269). Springer, New York, NY.

Pages