Snow albedo feedback Current knowledge, importance, outstanding issues and future directions

Citation:

Thackeray, C. W. , & Fletcher, C. G. . (2016). Snow albedo feedback Current knowledge, importance, outstanding issues and future directions. Progress in Physical Geography, 40(3), 392–408. doi:10.1177/0309133315620999

Abstract:

Over the past decade, substantial progress has been made in improving our understanding of surface albedo feedbacks, where changes in surface albedo from warming (cooling) can cause increases (decreases) in absorbed solar radiation, amplifying the initial warming (cooling). The goal of this review is to synthesize and assess recent research into the feedback caused by changing continental snow cover, or snow albedo feedback (SAF). Four main topics are evaluated: (i) the importance of SAF to the global energy budget, (ii) estimates of SAF from various data sources, (iii) factors influencing the spread in SAF, and (iv) outstanding issues related to our understanding of the physical processes that control SAF (and their uncertainties). SAF is found to exert a small influence on a global scale, with amplitude of ∼ 0.1 Wm−2 K−1, roughly 7% of the strength of water vapor feedback. However, SAF is an important driver of regional climate change over Northern Hemisphere (NH) extratropical land, where observation-based estimates show a peak feedback of around 1% decrease in surface albedo per degree of warming during spring. Viewed collectively, the current generation of climate models represent this process accurately, but several models still use outdated parameterizations of snow and surface albedo that contribute to biases that impact the simulation of SAF. This discussion serves to synthesize and evaluate previously published literature, while highlighting promising directions being taken at the forefront of research such as high resolution modeling and the use of large ensembles.

Website