Publications

Search
Author [ Title(Desc)] Type Year
E
Zhang, L. , Moo-Young, M. , & Chou, C. P. . (2010). Effect of aberrant disulfide bond formation on protein conformation and molecular property of recombinant therapeutics. Pure and Applied Chemistry, 82, 149-159.
Chou, C. P. , & Tseng, J. H. . (2000). Effect of carbon source on inclusion body formation upon overproduction of periplasmic penicillin acylase in Escherichia coli. Journal of the Chinese Institute of Chemical Engineers, 31, 219-224.
Xu, Y. L. , Lewis, D. , & Chou, C. P. . (2008). Effect of folding factors in rescuing unstable heterologous lipase B to enhance its overexpression in the periplasm of Escherichia coli. Applied Microbiology and Biotechnology, 79, 1035-1044.
Wu, M. S. , Pan, K. L. , & Chou, C. P. . (2007). Effect of heat-shock proteins for relieving physiological stress and enhancing the production of penicillin acylase in Escherichia coli. Biotechnology and Bioengineering, 96, 956-966. 2006_effect_of_heat-shock_proteins_for_relieving_physiological_stress_and_enhancing_the_production_of_penicillin_acylase_in_escherichia_coli.pdf
Huang, S. W. , Lin, Y. H. , Chin, H. L. , Wang, W. C. , Kuo, B. Y. , & Chou, C. P. . (2002). Effect of pH on high-temperature production of bacterial penicillin acylase in Escherichia coli. Biotechnology Progress, 18, 668-671.
Chou, C. P. , Tseng, J. H. , Kuo, B. Y. , Lai, K. M. , Lin, M. I. , & Lin, H. K. . (1999). Effect of SecB chaperone on production of periplasmic penicillin acylase in Escherichia coli. Biotechnology Progress, 15, 439-445.
Bruder, M. , Moo-Young, M. , Chung, D. A. , & Chou, C. P. . (2015). Elimination of carbon catabolite repression in Clostridium acetobutylicum-a journey toward simultaneous use of xylose and glucose. Applied Microbiology and Biotechnology, 99, 7579-7588. 2015_elimination_of_carbon_catabolite_repression_in_clostridium_acetobutylicum_-_a_journey_toward_simultaneous_use_of_xylose_and_glucose.pdf
Chou, C. P. . (2007). Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Applied Microbiology and Biotechnology, 76, 521-532. 2007_engineering_cell_physiology_to_enhance_recombinant_protein_production_in_escherichia_coli.pdf
Akawi, L. , Srirangan, K. , Liu, X. J. , Moo-Young, M. , & Chou, C. P. . (2015). Engineering Escherichia coli for high-level production of propionate. Journal of Industrial Microbiology & Biotechnology, 42, 1057-1072.
Srirangan, K. , Liu, X. J. , Akawi, L. , Bruder, M. , Moo-Young, M. , & Chou, C. P. . (2016). Engineering Escherichia coli for Microbial Production of Butanone. Applied and Environmental Microbiology, 82, 2574-2584. 2016_engineering_escherichia_coli_for_microbial_production_of_butanone.pdf
Westbrook, A. W. , Ren, X. , Moo-Young, M. , & Chou, C. P. . (2018). Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Biotechnology and Bioengineering, 115, 216-231. 2018_engineering_of_cell_membrane_to_enhance_heterologous_production_of_hyaluronic_acid_in_bacillus_subtilis.pdf
Srirangan, K. , Liu, X. J. , Tran, T. T. , Charles, T. C. , Moo-Young, M. , & Chou, C. P. . (2016). Engineering of Escherichia coli for direct and modulated biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer using unrelated carbon sources. Scientific Reports, 6. 2016en2.pdf
Narayanan, N. , Khan, M. , & Chou, C. P. . (2011). Enhancing Functional Expression of Heterologous Burkholderia Lipase in Escherichia coli. Molecular Biotechnology, 47, 130-143.
Narayanan, N. , Khan, M. , & Chou, C. P. . (2010). Enhancing functional expression of heterologous lipase B in Escherichia coli by extracellular secretion. Journal of Industrial Microbiology & Biotechnology, 37, 349-361.
Xu, Y. L. , Yasin, A. , Wucherpfennig, T. , & Chou, C. P. . (2008). Enhancing functional expression of heterologous lipase in the periplasm of Escherichia coli. World Journal of Microbiology & Biotechnology, 24, 2827-2835.
Pyne, M. E. , Moo-Young, M. , Chung, D. A. , & Chou, C. P. . (2014). Expansion of the genetic toolkit for metabolic engineering of Clostridium pasteurianum: chromosomal gene disruption of the endogenous CpaAI restriction enzyme. Biotechnology for Biofuels, 7. 2014ex1.pdf

Pages