MATH CONTESTS

I am involved with the following math competitions:

MATHCOUNTS (US middle school math competition)

I am on the Question Writing Committee for MATHCOUNTS (2021-2023) and was previously a National Reviewer (2019-2020).  My favourite problems that I have written for them are not public at the moment.

ARML (US high school team math competition, taking place at four different sites).

I am on the Problem Writing Committee for ARML (2020-present) and I was involved with ARMLocal 2019 (their local competition). I was also the moderator at the UNLV site for the 2023 competition. Some of my favourite problems that I have written for ARML are below:

(ARMLocal 2023 Tiebreaker): Let \(f(k)\) be the maximum value of \(y^2\) over all real numbers \(x,y\) such that \(ky^2 + 2xy\leq -\frac{1}{k+1}\) and \((k+1)y^2 + x^2 = 1\). Compute \(f(44) + f(45) + \cdots + f(2022) + f(2023)\).

(ARMLocal 2023 Team 9): In \(\triangle ABC\), let \(D,E,\) and \(F\) be the midpoints of \(\overline{BC}, \overline{AC},\) and \(\overline{AB},\) respectively. The circumcircles of \(\triangle AEF\) and \(\triangle BDF\) intersect at a point \(G\neq F\). Given that \(AB = 12, BC = 10,\) and \(CG = 15,\) compute the sum of all possible values of \(AC.\)

(ARMLocal 2023 Individual 6): Let \(\triangle ABC\) be acute with \(AB = 8\) and \(AC = 5\). Suppose \(D\) is the intersection of the internal angle bisector of \(\angle A\) and the altitude from \(B\) to \(AC\). Let \(F\) be the circumcenter of \(\triangle ABD\). Suppose that \(F'\), the reflection of \(F\) over \(\overleftrightarrow{AB}\), lies on the circumcircle of \(\triangle ABD\). Compute the perimeter of \(\triangle ABC\).

(ARML 2022 Individual 4): Let \(n\) be the number of ordered quadruplets \((A,B,C,D)\) such that each of \(A,B,C,\) and \(D\) is a subset of \(\{1,2,3,4,5,6\}\)\(A\cap B\) is a subset of \(C\cap D\), and \(A\cup B\) is a subset of \(C\cup D\). Compute \(n\).

(ARMLocal 2021 Team 15): Compute the sum of all positive integers \(n\leq 50\) such that \(n^4 + n^2 + 1\) is divisible by a perfect square other than \(1\).

 

AMC 10/12 and AIME (US high school competitions used to eventually determine the team for the International Math Olympiad)

I am on the editorial boards for AMC 10/12 and AIME (both 2023-present).