University of Waterloo researchers combine Nobel prize-winning concepts to achieve scientific breakthrough.
Researchers at the University of Waterloo's Institute for Quantum Computing (IQC) have brought together two Nobel prize-winning research concepts to advance the field of quantum communication.
Scientists can now efficiently produce nearly perfect entangled photon pairs from quantum dot sources.
Entangled photons are particles of light that remain connected, even across large distances, and the 2022 Nobel Prize in Physics recognized experiments on this topic. Combining entanglement with quantum dots, a technology recognized with the Nobel Prize in Chemistry in 2023, the IQC research team aimed to optimize the process for creating entangled photons, which have a wide variety of applications, including secure communications.
The combination of a high degree of entanglement and high efficiency is needed for exciting applications such as quantum key distribution or quantum repeaters, which are envisioned to extend the distance of secure quantum communication to a global scale or link remote quantum computers. Previous experiments only measured either near-perfect entanglement or high efficiency, but we're the first to achieve both requirements with a quantum dot.
This research, Oscillating photonic Bell state from a semiconductor quantum dot for quantum key distribution, was recently published in Communications Physics by Pennacchietti, Reimer, Jennewein, Lütkenhaus, Brady Cunard, Shlok Nahar, and Sayan Gangopadhyay from IQC, alongside their collaborators Dr. Mohd Zeeshan, Dr. Philip Poole, Dr. Dan Dalacu, Dr. Andreas Fognini, Dr. Klaus Jöns, and Dr. Val Zwiller.