Projects
This project brings a reformulation of quantum game theory as a mathematical theory of strategic interactions involving quantum information among rational decision-making agents.
We are working to develop more compact and efficient terahertz light sources using polaritons – hybrid particles consisting of a photon coupled strongly with a material excitation.
This project aims to achieve a distinctly novel way to control the emission pattern of a single atom by placing the atom at a distance of a few wavelengths from a chiral metasurface — a phased two-dimensional array of nano-scale metallic antennas or dielectric scatterers.
In this project we develop a quantum interface between microwave and optical photons as a key enabling technology of a hybrid quantum network. In such a network, the robust optical photons carry quantum information through optical fibres over long distances, while superconducting microwave circuits protected from thermal photon noise by the low temperature environment of a dilution refrigerator function as quantum nodes, providing memory, processing and routing capability.
This project develops new sources of light that utilize quantum entanglement to enhance imaging resolution and detection. We aim to go beyond simple photon pairs and advance our understanding and control of new quantum states of light.
Quantum repeaters are by necessity hybrid devices, as they connect flying qubits (photons) to small processors for error correction and privacy amplification. In this project we develop a two-node proof-of-principle hybrid quantum repeater system. We generate entangled photon pairs from quantum dots embedded in semiconductor nanowire and store them in atomic quantum memories following a frequency up-conversion. We expect this will enable quantum key distribution over long distances at rates exceeding those possible through a direct link.
A major focus of this project is to simplify QMOS devices – reducing the number of gate electrodes per device, even down to a single electrode. The team led by Dr. Baugh with collaborators Dr. Lan Wei and Dr. Michel Pioro-Ladrière combines expertise in electrical engineering and CMOS integrated design, QMOS fabrication and physics. By testing the viability of a network/node approach, this project charts a path toward a large-scale quantum information processor in silicon.
This project advances our ability to characterize and study novel quantum materials, quantum devices, and even individual molecules at the atomic level. By combining Non-Contact Atomic Force Microscopy (NC-AFM), Scanning Tunneling Microscopy (STM) and scanning gate methods, we correlate spatial information with transport properties and can locally manipulate charge, spin and structural states.
Using ultrasensitive silicon nano-wired mechanical resonators, we are working to distinguish small ensembles of nuclear and electron spins. In doing so, we are striving to bring MR down to the nanometer scale, allowing imaging of single viral particles. Subsequently, extending the approach to the Angstrom scale, our goal is to demonstrate MR imaging of individual protein molecules.
We are developing quantum simulators based on arrays of neutral atoms excited to Rydberg states. Such Rydberg atom arrays are advantageous for simulating the dynamics of interacting spin systems (Ising spin models) in higher dimensions and arbitrary geometries.
We are building technologies for the control and measurement of superconducting qubits to enable the first demonstration of an extensible, medium-scale quantum processor.
This project will enhance the capability of trapped ion quantum simulators significantly beyond the state-of-the-art and will identify a set of concrete many-body physics problems that can be realistically simulated. Altogether these contributions will form an enabling step towards the scalability of a quantum processor.
In this project we construct a shared trapped-ion quantum computing platform, QuantumIon, that will enable a broader and interdisciplinary scientific community to access an advanced quantum computing platform, thereby accelerating the discovery of new methods and applications of quantum computing.
Hence, the aims of this project are two-fold: 1) to unravel the mechanisms and energetic barriers of normal and hyperphosphorylated tau protein aggregation by building three-dimensional atomistic models of aggregated structures and performing classical and enhanced sampling molecular dynamics simulations on these models; 2) to predict the potential of QDs in binding to and disrupting hyperphosphorylated tau tangles though polarized ligand docking and free-energy calculations.
In this project, we build an artificial intelligence-based model using the available structural data of fragment-bound SARS-CoV-2 M pro complexes.Leveraging known drug-target interactions, our goal is to produce a machine learning algorithm capable of predicting potential drugs that can be repurposed for the treatment of COVID-19.
In this project, we build a solid-state quantum simulator for engineering a specific Hamiltonian. Quantum simulators are purpose-built devices with little to no need for error correction, thereby making this type of hardware less demanding than universal quantum computers. Our platform consists of exciton-polariton condensates in multiple quantum-wells sandwiched in a semiconductor Bragg stack onto which a two- dimensional lattice was imprinted. The lattice imprinting can be achieved, for example, by partial etching of the spacer with the lattice pattern followed by an overgrowth of the upper layers of the Bragg structure.
In this project, we will construct composite heterostructures with nitrides, oxides and hybrid materials involving high-temperature superconducting oxides and “conventional” transition metals/nitrides.
In this project we synthesize high quality topological insulators and superconductors, couple them together to form a clean interface (“strong proximity”), and use tunneling spectroscopy to identify the presence of Majorana fermions. Once we are able to move the Majorana particles in a controlled fashion, we then braid an array of them and extract topological quantum information. This will provide the first demonstration of non-Abelian statistics on topological insulators and the first realization of topological quantum computing.
Our strategy for generating Majorana fermions is to combine helical surface states of topological insulators with superconductors. Through combined electrical and magnetic gating, we are working toward a long-term capability to create and manipulate Majorana fermions over a scalable network.
The goal of this project is to identify a reliable solution tolerant to fabrication variances and limited read/write margins, and to effectively integrate STT-MRAM into the broad range of Complementary Metal Oxide Semiconductor (CMOS) based technology. We aim to establish a widely accessible process to integrate MRAM cells on post-CMOS integrated circuit chips. We will do this by creating magnesium oxide based tunnel junctions with low-resistance area product and high tunnel magnetoresistance and by investigating novel STT-RAM cell design. This project marks one of the first attempts to hybridize spintronics with semiconductor devices, thereby enabling a new route towards higher-performing electronics.
In this project, we develop new theoretical tools for quantum simulations of non-Abelian problems in high energy physics (HEP), and HEP problems beyond one dimension. Our work is conducted in close collaboration with experimental groups to design robust and feasible simulation schemes that are custom-designed to particular quantum platforms.
In this project, we develop quantum sensors that exploit these attributes to increases the precision of measurements of fundamental forces and materials structure. With David Cory, Alexander Cronin of the University of Arizona, Han Wen of National Institute of Healthand collaborators at NIST, we engineer structure into neutron beams in the form of spatially correlated spin, phase, linear and angular momentum to create novel neutron interferometers.
With David Cory and collaborators at the National Institute of Standards and Technology (NIST) we explore how to engineer beams of neutron or photons that carry entanglement.
In this project we seek to improve the capabilities of trapped ion quantum processors, implementing all of the basic tools required to perform quantum information processing with multi-level qudits.
Ocular imaging using structured light beams has the potential to detect subtle changes in macular pigment and other ocular structures that occur before macular degeneration progresses to the point of vision loss. Such new sensing tools could enable the early detection and treatment of macular degeneration and reduce the significant societal burden of the disease.
This project aims to provide a suitable material platform to realize MZMs. To achieve this, we develop a high-mobility semiconductor layer structure in order to observe the experimental signature of Majorana fermions on a platform that can be readily scaled and advanced to logical qubit devices.
Using novel approaches, we are working to demonstrate the generation of two or more entangled microwave photons.
Strongly-coupled field theories describe both fundamental and applied quantum problems. With the goal of exploring these theories, we are working to develop functional quantum simulators, which take advantage of the phenomenon of superposition.
Success in these experiments will allow for exotic spintronic devices and sensors to be developed with functionalities unavailable with traditional materials, which with potential benefits to applications in the defense and security sectors.
This project aims to boost the speed of on-chip quantum operations by using bright, on-demand entangled photon sources with an extraction efficiency of more than two orders of magnitude higher than the existing state-of-the-art technology based on probabilistic photon sources.
This research aims to achieve experimental realization of superconducting quantum memelements, which has never been done before. A quantum memcapacitor will be fabricated by depositing and patterning thin aluminum films, and then cooling to cryogenic temperatures to unveil quantum-mechanical properties in highly nonlinear regimes.
This project aims to design and fabricate new composite multiferroic nanostructures with enhanced interactions between the electric polarization and spin by coupling ferroelectric and ferromagnetic components.
The goals of this project are (1) to generate and detect coherent magnons in 2D magnets for quantum magnonics; and (2) to induce collective quantum states in 2D magnets (magnon BECs and Kitaev QSLs), which can provide an alternative route to defeat quantum decoherence. 2D magnetic insulators interfaced with topological semimetals will be fabricated to generate and detect coherent magnons, magnon BECs and QSLs.
This project aims to optimize the generation efficiency of entangled photons using epitaxially grown metasurfaces. GaAs is commonly used to enable efficient photon pair generation. While current GaAs-based SPDC metasurfaces are fabricated using the GaAs(001) crystal orientation, the proposed project instead posits using a GaAs crystal orientation known as GaAs(111) that is more challenging to grow but can enhance the rate of photon pair generation by at least one order of magnitude and potentially as much as three orders of magnitude.
As the demand for digital services grows, so does the need for data centres and transmission networks. Unfortunately, these data systems consume vast amounts of energy, resulting in nearly 1% of all energy-related greenhouse gas emissions. This project aims to invent novel quantum devices for highly energy-efficient computing that may help reduce the global digital carbon footprint.
This work aims to develop QDs from MXene, a class of layered transition metal carbides, carbonitrides or nitrides. These MXene QDs will increase the energy density of MCs by twofold and optimize their electrochemical performance for commercial viability.