*corresponding author
2023
117) M Courtney, T Glawdel, CL Ren*, “Investigating Peak Dispersion in Free-Flow Counterflow Gradient Focusing due to Electroosmotic Flow”, Electrophoresis, 44 (2023) 646-655
DOI: https://doi.org/10.1002/elps.202200230
2022
116) W Cui, Z Ren, Y Song, CL Ren*, “Development and potential for point-of-care heavy metal sensing using microfluidic systems: a brief review”, Sens Actu A-Phys, 344 (2022) 113733.
DOI: https://doi.org/10.1016/j.sna.2022.113733
115) W Cui, A Abbasi, CL Ren*, “Crosstalk Analysis and Optimization in a Compact Microwave-Microfluidic Device Towards Simultaneous Heating and Sensing of Droplets” J Micromech Microeng, 32 (2022) 095005.
DOI: https://doi.org/10.1088/1361-6439/ac821e
114) W Cui, P Zhao, J Wang, N Qin, EA Ho, CL Ren*, “Reagent free detection of SARS-CoV-2 using an antibody-based microwave sensor in a microfluidic platform”, Lab Chip, 22 (2022) 2307-2314.
DOI: https://doi.org/10.1039/D2LC00145D
113) M Hebert, J Huissoon, CL Ren*, “A Quantitative Study of the Dynamic Response of Compliant Microfluidic Chips in a Microfluidics Context”, J Micromech Microeng, 32 (2022) 085004.
DOI: https://doi.org/10.1088/1361-6439/ac7844
112) M Hebert*, J Huissoon, CL Ren*, “A perspective of active microfluidic platforms as an enabling tool for applications in other fields”, J Micromech Microeng, 32 (2022) 043001.
DOI: https://doi.org/10.1088/1361-6439/ac545f
111) PS Lee, RZ Gao, A Colpitts, RW Murdock, D Dittmer, A Schirm, JY Tung, CL Ren*, “Air Microfluidics-Enabled Soft Robotic Transtibial Prosthesis Socket Liner towards Dynamic Management of Residual Limb Contact Pressure and Volume Fluctuation”, Biomicrofluidics, 16, (2022) 034107
DOI: https://doi.org/10.1063/5.0087900
110) R Gao, VNT Mai, N Levinski, JM Kormylo, RW Murdock, CR Dickerson, CL Ren*, “A Novel Air microfluidics-Enabled Soft Robotic Sleeve Towards Realizing Innovative Lymphedema Treatment”, Biomicrofluidics , 16 (2022) 034101.
DOI: https://doi.org/10.1063/5.0079898
109) S Kashyap, Z Almutairi, N Qin, P Zhao, S Bedi, D Johnson, and CL Ren*, “Effects of Surfactant Size and Concentration on the Internal Flow Fields of Moving Slug and Disk-like Droplets via μ-PIV”, Chem Eng Sci, 255 (2022) 117668.
DOI: https://doi.org/10.1016/j.ces.2022.117668
108) W Kapadia, N Qin, P Zhao, CM Phan, L Haines, L Jones, CL Ren*, “Shear-thinning and Temperature-dependent Viscosity Relationships of Contemporary Ocular Lubricants”, Transl Vis Sci Technol, 11 (2022) 1.
DOI: https://doi.org/10.1167/tvst.11.3.1
107) M Marcali, X Chen, M Aucoin, CL Ren*, “Droplet Formation of Biological Non-Newtonian Fluid in T-Junction Generators, Part II: Modelling”, Phys Rev E, 105 (2022) 025106.
DOI: https://doi.org/10.1103/PhysRevE.105.025106
106) M Marcali, X Chen, M Aucoin, CL Ren*, “Droplet Formation of Biological Non-Newtonian Fluid in T-Junction Generators, Part I: Experimental Investigation”, Phys Rev E, 105 (2022) 025105.
DOI: https://doi.org/10.1103/PhysRevE.105.025105
105) T Zablotny, M Courtney, J P Huissoon and CL Ren*, “Lensless imaging for droplet identification towards visual feedback-based pressure controlled droplet microfluidic platforms”, Sens Actu A – Phy, 334 (2022) 113338.
DOI: https://doi.org/10.1016/j.sna.2021.113338
104) M Courtney, T Glawdel, CL Ren*, “Investigating Peak Dispersion in Free-Flow Counterflow Gradient Focusing”, Electrophoresis, 43 (2022) 776-784.
DOI: https://doi.org/10.1002/elps.202100203
2021
103) R Gao, CL Ren*, “Synergizing Microfluidics with Soft Robotics: A Perspective on Miniaturization and Future Directions”, Biomicrofluidics, 15 (2021) 011302
DOI: https://doi.org/10.1063/5.0036991
102) J Farnese, P Zhao and CL Ren*, “Effect of Surface Roughness on Bond Strength Between PCTE Membranes and PDMS Towards Microfluidic Applications”, IntJAdhes Adhes, 106 (2021) 102800
DOI: https://doi.org/10.1016/j.ijadhadh.2020.102800
101) N Qin*, P Zhao, E Ho, G Xin, CL Ren*, “Microfluidic Technology for Antibacterial Resistance Study and Antibiotic Susceptibility Testing: review and perspective”, ACS Sensors, 6 (2021) 3-21.
DOI: https://doi.org/10.1021/acssensors.0c02175
100) A Lau, CL Ren*, LP Lee*, “Critical Review on Where CRISPR Meets Molecular Diagnostics”, Prog. Biomed. Eng,3 (2021) 012001.
DOI: https://doi.org/10.1088/2516-1091/abbf5e
99) W Cui, G Yesiloz, CL Ren*, “Microwave heating induced on-demand droplet generation in microfluidic systems”, Anal Chem, 93 (2021) 1266-1270.
DOI: https://doi.org/10.1021/acs.analchem.0c04431
2020
98) W. Cui, G. Yesiloz, C. L. Ren*, "Numerical analysis on droplet mixing induced by microwave heating: Decoupling of influencing physical properties." Chem Eng Sci, 224 (2020): 115791.
DOI: https://doi.org/10.1016/j.ces.2020.115791
97) M. Courtney, E. Thompson, T. Glawdel, C. L. Ren*, “Counter-Flow Gradient Focusing in Free-Flow Electrophoresis for Protein Fractionation”, Anal Chem, 92 (2020) 7317-7324.
DOI: https://doi.org/10.1021/acs.analchem.0c01024
96) T. H. Nguyen, A. Sedighi, U. J. Krull, C. L. Ren*, “Multifunctional Droplet Microfluidic Platform for Rapid Immobilization of Oligonucleotides on Semiconductor Quantum Dots”, ACS Sens, 5 (2020) 746-753.
DOI: https://doi.org/10.1021/acssensors.9b02145
95) M Hébert, J Huissoon, C. L. Ren*, “Silicone-based Soft Matrix Nanocomposite Strain Sensor using Graphene and Silly Putty”, Sens Actuat A, 35 (2020) 111917.
DOI: https://doi.org/10.1016/j.sna.2020.111917
94) R. Gao, M. Hebert, J. Huissoon, C. L. Ren*, “Customized Pressure Pump System with Compatible Performance to Commercial Systems and Fast Response”, HardwareX, 7 (2020) e00096.
DOI: https://doi.org/10.1016/j.ohx.2020.e00096
93) D. Wong, K. Erkorkmaz, C. L. Ren*, “On-demand Droplet Controls with Computer Vision and Pneumatic Actuation”, IEEE-ASME T. Mech. 25 (2020) 1129-1137.
DOI: https://doi.org/10.1109/TMECH.2020.2967999
92) P. Pezeshkpour, G. Schneider*, C. L. Ren, “A shape Factor Model for Injection Analysis of Microchip Sample Electrophoresis”, Numer Heat Tr A-Appl, 77 (2020) 1-12.
DOI: https://doi.org/10.1080/10407782.2019.1678955
2019
91) P. Zhao, L. LeSergent; J. Farnese; J. Z. Wen*,C. L. Ren, “Electrophoretic Deposition of Carbon Nanotubes on Semi-conducting and Non-conducting Substrates”, Electrochem Communications, 108 (2019) 106558.
DOI: https://doi.org/10.1016/j.elecom.2019.106558
90) M. Hébert, M. Courtney, C. L. Ren*, “Semi-automated, Precise on-Demand Control of Individual Droplets with T Junction Multiplexing and a Demonstrated Application to a Drug Screening Assay”, Lab Chip, 19 (2019), 1490-1501.
DOI: https://doi.org/10.1039/c9lc00128j
89) P. Zhao, N. Qin, C. L. Ren, J. Z. Wen*, “Surface Modification of Polyamide Meshes and Nonwoven Fabrics by Plasma Etching and a PDA/Cellulose Coating for Oil/Water Separation", Appl Surf Sci, 481 (2019) 883-891.
DOI: https://doi.org/10.1016/j.apsusc.2019.03.152
88) P. Pezeshkpour, G Schneider*, C. L. Ren, “Time and Length Scales in Governing Equations and Boundary Conditions for On-Chip Electrophoretic Sample Separation”, Numer Heat Tr A-Appl, 76 (2019) 1-18.
DOI: https://doi.org/10.1080/10407782.2019.1591861
87) M. Courtney, C. L. Ren*, “Counter-Flow Gradient Electrophoresis for Focusing and Elution” Electrophoresis, 40 (2019) 643-658.
DOI: https://doi.org/10.1002/elps.201800376
86) P. Zhao, N. Qin, C. L. Ren, J. Z. Wen*, “Polyamide 6.6 Separates Oil/Water Due to Its Dual Underwater Oleophobicity/Uunderoil Hydrophobicity: Role of 2D and 3D Porous Structures", Appl Surf Sci, 466 (2019) 282-288.
DOI: https://doi.org/10.1016/j.apsusc.2018.10.041
2018
85) A. Grimmer*, X. Chen, M. Hamidovi, W. Haselmayr, C. L. Ren, R. Wille*, “Simulation Before Fabrication: A Case Study on the Utilization of Simulators for the Design of Droplet Microuidic Networks”, RSC Adv, 8 (2018) 34733.
DOI: https://doi.org/10.1039/C8RA05531A
84) P. Pezeshkpour, G Schneider*, C. L. Ren, “Poisson-Boltzmann Equation for Microfluidic Transport Phenomena with Statistical Thermodynamics Approach”,J Thermophys Heat Transfer, 33 (2019) 462-471.
DOI: https://doi.org/10.2514/1.T5534
83) N. Qin, J. Z. Wen, B. Chen, C. L. Ren*, “On Nonequilibrium Shrinkage of Supercritical CO2 Droplets in a Water-Carrier Microflow”, Appl Phy Lett, 113 (2018) 033703.
DOI: https://doi.org/10.1063/1.5039507
82) Y. Zhang, H. Zeng*, S. Mao, S. Kondo, H. Nakajima, S. Kato, C. L. Ren, K. Uchiyama, “Reversibly Switching Molecular Spectra”, ACS Appl Mater Interfaces, 10 (2018) 23247.
DOI: https://pubs.acs.org/doi/abs/10.1021/acsami.8b04530
81) N. Qin, Y. Feng, J. Z. Wen, C. L. Ren*, "Numerical Study on Single Flowing Liquid and Supercritical CO2 Drop in Microchannel: Thin Film, Flow Fields, and Interfacial Profile", Inventions, 3 (2018) 35.
DOI: https://doi.org/10.3390/inventions3020035
80) T. H. Nguyen, X. Chen, A. Sedighi, U. Krull, C. L. Ren*, "A Droplet-Based Microfluidic Platform for Rapid Immobilization of Quantum Dots on Individual Magnetic Microbeads", Microfluidics Nanofluidics, 22 (2018) 63.
DOI: https://doi.org/10.1007/s10404-018-2085-x
79) B. Yu, C. Elbuken, C. Shen, J. Huissoon, C. L. Ren*, “An Integrated Microfluidic Device for the Sorting of Yeast Cell Cycle Phases Using Image Processing”, Sci Reports, 8 (2018) 3550.
DOI: https://doi.org/10.1038/s41598-018-21833-9
78) N. Qin, J. Z. Wen, C. L. Ren*, “Hydrodynamic Shrinkage Of Liquid CO2 Taylor Drops in A Straight Microchannel”, J Phys Condens Matter, 30 (2018) 094002.
DOI: https://doi.org/10.1088/1361-648X/aaa81c
2017
77) D. Tong, G. Yesiloz, C. L. Ren, C. M. R. Madhuranthakam*, “Controlled Synthesis of Poly (Acrylamide-co-Sodium Acrylate) Copolymer Hydrogel Micro-particles in a Droplet Microfluidics Device for Enhanced Properties”, Ind Eng Chem Res, 56 (2017) 14972–14979.
DOI: https://pubs.acs.org/doi/10.1021/acs.iecr.7b02949
76) N. Qin, J. Z. Wen, C. L. Ren*, “Highly Pressurized Partially Miscible Liquid-Liquid Flow in A Micro T-Junction. II. Theoretical Justifications and Modelling”, Phys. Rev. E, 95 (2017) 043111.
DOI: https://doi.org/10.1103/PhysRevE.95.043111
75) N. Qin, J. Z. Wen, C. L. Ren*, “Highly Pressurized Partially Miscible Liquid-Liquid Flow in A Micro T-Junction. I. Experimental Observations”, Phys. Rev. E, 95 (2017) 043110.
DOI: https://doi.org/10.1103/PhysRevE.95.043110
74) E. Amstad*, X. Chen, M. Eggersdorfer, N. Cohen, T. E. Kodger, C. L. Ren, D. A. Weitz, “Parallelization of Microfluidic Flow-Focusing Devices”, Phy Rev E, 95 (2017) 043105.
DOI: https://doi.org/10.1103/PhysRevE.95.043105
73) X. Chen, C. L. Ren*, “A Microfluidic Chip Integrated with Droplet Generation, Pairing, Trapping, Merging, Mixing and Releasing”, RSC Adv, 7 (2017) 16738-16750.
DOI: https://doi.org/10.1039/C7RA02336G
72) P. Zhao, N. Qin, J. Z. Wen*, C. L. Ren, “Photocatalytic Performances Of Zno Nanoparticle Film and Vertically Aligned Nanorods in Chamber-Based Microfluidic Reactors: Reaction Kinetics and Flow Effects”, Appl Catal B, 209 (2017) 468-475.
DOI: https://doi.org/10.1016/j.apcatb.2017.03.020
71) X. Chen, A. Brukson, C. L. Ren*, “A Simple Droplet Merger Design for Controlled Reaction Volumes”, Microfluidics Nanofluidics, 21 (2017) 34.
DOI: https://doi.org/10.1007/s10404-017-1875-x
70) X. Chen, C. L. Ren*, “Experimental Study on Droplet Generation in Flow Focusing Devices Considering a Stratified Flow with Viscosity Contrast”, Chem Eng Sci, 163 (2017) 1-10.
DOI: ihttps://doi.org/10.1016/j.ces.2017.01.029
69) G. Yesiloz, M. S. Boybay, C. L. Ren*, “Effective Thermo-Capillary Mixing in Droplet Microfluidics Integrated with a Microwave Heater”, Anal Chem, 89 (2017) 1978–1984.
DOI: https://doi.org/10.1021/acs.analchem.6b04520
68) M. Courtney, X. Chen , S. Chan , T. Mohamed, P. N. Rao, C. L. Ren*, “Droplet Microfluidic System with On-Demand Trapping and Releasing of Droplet for Drug Screening Applications”, Anal Chem, 89 (2017) 910–915.
DOI: https://doi.org/10.1021/acs.analchem.6b04039
2016
67) D. Wong, C. L. Ren*, “Microfluidics Droplet Trapping, Splitting and Merging with Feedback Controls and State Space Modelling”, Lab Chip 16 (2016) 3317-3329.
DOI: https://doi.org/10.1039/C6LC00626D
66) D. Wong, G. Yesiloz, M. S. Boybay, C. L. Ren*, “Microwave Temperature Measurement in Microfluidic Devices”, Lab Chip, 16 (2016) 2192-2197.
DOI: https://doi.org/10.1039/C6LC00260A
65) C. Jin, C. L. Ren and M. B. Emelko*, “Concurrent Modeling of Hydrodynamics and Interaction Forces Improves Particle Deposition Predictions”, Environ Sci Technol, 50 (2016) 4401–4412.
DOI: https://doi.org/10.1021/acs.est.6b00218
2015
64) C. Jin, T. Glawdel, C. L. Ren, M. Emelko*, “Non-Linear, Non-Monotonic Effect of Nano-Scale Roughness on Particle Deposition in Absence of an Energy Barrier”, Sci Rep, 5 (2015) 17747.
Doi: https://doi.org/10.1038/srep17747
63) G. Yesiloz, M. S. Boybay, C. L. Ren*, “Label-Free High-Throughput Detection and Content Sensing Of Individual Droplets in Microfluidic Systems”, Lab Chip, 21 (2015) 4008-4019. (cover)
DOI: https://doi.org/10.1039/C5LC00314H
62) H. Zeng, T. Glawdel, C. L. Ren*, “Microchip with an Open Tubular Immobilized Ph Gradient for UV Whole Column Imaging Detection”, Electrophoresis, 36 (2015) 2542 -2545.
DOI: https://doi.org/10.1002/elps.201500041
61) S. M. Shameli, C. L. Ren*, “Microfluidic Two-Dimensional Separation of Proteins Combining Temperature Gradient Focusing and Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis”, Anal Chem, 87 (2015) 3593–3597.
DOI: https://doi.org/10.1021/acs.analchem.5b00380
60) X. Chen, T. Glawdel, N. Cui, C. L. Ren*, "Model of Droplet Generation in Flow Focusing Devices Operating in the Squeezing Regime", Microfluidics Nanofluidics, 18 (2015) 1341-1353.
DOI: https://doi.org/10.1007/s10404-014-1533-5
59) C. C. Chung, T. Glawdel, C. L. Ren*, H. C. Chang*, "Combination of ac Electroosmosis-Dielectrophoresis for Particle Manipulation on Electrically-Induced Microscale Wave Structures”, J Micromech Microeng, 25 (2015) 035003.
DOI: https://doi.org/10.1088/0960-1317/25/3/035003
58) S. M. Shameli, T. Glawdel, C. L. Ren*, “Model of Separation Performance of Bilinear Gradients in Scanning Format Counter-flow Gradient Electrofocusing Techniques”, Electrophoresis, 36 (2015)668-674. (invited)
DOI: https://doi.org/10.1002/elps.201400260
2013
57) K. M. Schreiter, T. Glawedel, J. A. Forrest, C. L. Ren*, "Robust Thin-film Fluorescence Thermometry for Prolonged Measurements in Microfluidic Devices", RSC Adv, 3 (2013) 17236-17243.
DOI: https://doi.org/10.1039/C3RA41368C
56) M. S. Boybay, A. Jiao, T. Glawdel, C. L. Ren*, "Microwave Sensing and Heating over Individual Droplets in Microfluidic Devices", Lab Chip, 13 (2013) 3840-3846. (cover-highlighted on the Lab on a Chip blog)
DOI: https://doi.org/10.1039/C3LC50418B
2012
55) S. M. Shameli, T. Glawdel, V. Fernand, C. L. Ren*, "Micellar Affinity Gradient Focusing in a Microfluidic Chip with Integrated Bilinear Temperature Gradients", Electrophoresis, 33 (2012) 2703–2710.
DOI: https://doi.org/10.1002/elps.201200283
54) Z. Almutairi, C. L. Ren*, L. Simon, "Evaluation of Polydimethylsiloxane (PDMS) Surface Modification Approaches for Microfluidic Applications", Colloid Surface A:Physicochemical Eng Aspects, 415 (2012) 406-412.
DOI: https://doi.org/10.1016/j.colsurfa.2012.10.008
53) L. Li, X. Bi, J. Yu, C. L. Ren, Z. Liu*, "A New Soft-Lithographic Route for the Facile Fabrication of Hydrophilic and Easy-To-UV Detect Sandwich Microchips", Electrophoresis, 33 (2012) 2591-2597.
DOI: https://doi.org/10.1002/elps.201200206
52) T. Glawdel, C. L. Ren*, "Droplet Formation in Microfluidics T-junction Generators Operating in the Transitional Regime: Part III - Dynamic Surfactant Effects", Phy Review E, 86 (2012) 026308.
DOI: https://doi.org/10.1103/PhysRevE.86.026308
51) T. Glawdel, C. L. Ren*, "Global Network Design for Robust Operation of Microfluidic Droplet Generators with Pressure Driven Flow”, Microfluidics and Nanofluidics, 13 (2012) 469-480.
DOI: https://doi.org/10.1007/s10404-012-0982-y
50) S. M. Shameli, T. Glawdel, Z. Liu, C. L. Ren*, "Bilinear Temperature Gradient Focusing in a Hybrid PDMS/Glass Microfluidic Chip Integrated with Planar Heaters for Generating Temperature Gradients", Anal Chem,84 (2012) 2968-2973.
DOI:https://doi.org/10.1021/ac300188s
49) T. Glawdel, C. Elbuken, C. L. Ren*, "Droplet Formation in Microfluidics T-junction Generators Operating in the Transitional Regime: Part II - Theoretical and Numeric Modelling", Phy Review E, 85 (2012) 016323.
DOI: https://doi.org/10.1103/PhysRevE.85.016323
48) T. Glawdel, C. Elbuken, C. L. Ren*, "Droplet Formation in Microfluidics T-junction Generators Operating in the Transitional Regime: Part I - Experimental Observations", Phy Review E, 85(2012) 016322.
DOI: https://doi.org/10.1103/PhysRevE.85.016322
2011
47) T. Glawdel, C. Elbuken, C. L. Ren*, "Passive Droplet Trafficking at Microfluidic Junctions Under Geometric and Flow Asymmetries", Lab Chip, 11 (2011) 3774-3784. (cover-highlighted on the Lab on a Chip blog)
DOI: https://doi.org/10.1039/C1LC20628A
46) C. Elbuken, T. Glawdel, D. Chan, C. L. Ren*, "Detection of Microdroplet Size and Speed Using Capacitive Sensors", Sens Actuator A: Phys, 171 (2011), 55-62.
DOI: https://www.sciencedirect.com/science/article/abs/pii/S0924424711004225?via%3Dihub
45) B. Y. Yu, C. Elbuken, C. L. Ren*, J. P. Huissoon, “Image Processing and Classification Algorithm for Yeast Cell Morphology in a Microfluidic Chip”, J Biomed Opt, 16 (2011) 066008. (selected for the June 15, 2011 issue of virtual Journal of Biological Physics Research)
DOI: https://doi.org/10.1117/1.3589100
44) L. Gui, C. L. Ren*, “Exploration and Evaluation of Embedded Shape Memory Alloy (SMA) Microvalves for High Aspect Ratio Microchannels”, Sens Actuator A: Phys, 168 (2011) 155-161.
DOI: https://www.sciencedirect.com/science/article/abs/pii/S0924424711001671?via%3Dihub
43) S. M. Shameli, C. Elbuken, J. Ou, C. L. Ren*, J. Pawliszyn, "Fully Integrated PDMS/SU-8/quartz Microfluidic Chip with a Novel Macroporous Polydimethylsiloxane (PDMS) Membrane for Isoelectric Focusing on Proteins using Whole-channel Imaging Detection", Electrophoresis, 32 (2011) 333-339.
DOI: https://doi.org/10.1002/elps.201000643
42) L. Gui, B. Y. Yu, C. L. Ren*, J. P. Huissoon, “Microfluidic Phase Change Valve with a Two-level Cooling/Heating System”, Microfluidics Nanofluidics, 10 (2011) 435-445.
DOI: https://doi.org/10.1007/s10404-010-0683-3
2010
41) J. Ou, C. L. Ren*, J. Pawliszyn, “A Simple Method for Preparation of Macroporous Polydimethylsiloxane Membrane for Microfluidic Chip-based Isoelectric Focusing Applications”,Anal Chim Acta, 662 (2010) 200-205.
DOI: https://doi.org/10.1016/j.aca.2010.01.010
2009
40) T. Glawdel, C. Elbuken, L. Lee, C. L. Ren*, "Microfluidic System with Integrated Electroosmotic Pumps, Concentration Gradient Generator and Fish Cell Line (RTgill-W1)-Towards Water Toxicity Testing", Lab Chip, 9 (2009), 3243-3250.
DOI: https://doi.org/10.1039/b911412m
39) Z. Shao, C. L. Ren*, G. E. Schneider, "A Complete Numerical Model for Electrokinetic Flow and Species Transport in Microchannels", Eur Phys J Appl Phys: Special Topics, 171 (2009) 189–194.
DOI: https://doi.org/10.1140/epjst/e2009-01028-4
38) J. Ou, T. Glawdel, C. L. Ren*, J. Pawliszyn*, “Fabrication of a Hybrid PDMS/SU-8/quartz Microfluidic Chip for Enhancing UV Absorption Whole-channel Imaging Detection Sensitivity and Application for Isoelectric Focusing of Proteins”, Lab Chip, 9 (2009) 1926-1932.
DOI: https://doi.org/10.1039/B821438G
37) Z. Almutairi, T. Glawdel, C. L. Ren*, D. A. Johnson, “A Y-channel Design for Improving Zeta Potential and Surface Conductivity Measurements using the Current Monitoring Method”, Microfluidics Nanofluidics, 6 (2009) 241-251.
DOI: https://doi.org/10.1007/s10404-008-0320-6
36) T. Glawdel, Z. Almutairi, S. Wang, C. L. Ren*, “Photobleaching Absorbed Rhodamine B to Improve Temperature Measurements in PDMS Microchannels”, Lab Chip, 9 (2009) 171-174.
DOI: https://doi.org/10.1039/B805172K
35) T. Glawdel, C. L. Ren*, “Electro-osmotic Flow Control for Living Cell Analysis in Microfluidic PDMS Chips”, Mech Res Comm: Special Issue of Recent Advances in Microfluidics, 36 (2009) 75-81. (invited) DOI: https://doi.org/10.1016/j.mechrescom.2008.06.015
2008
34) J. Ou, T. Glawdel, R. Samy, S. Wang, Z. Liu, C. L. Ren*, J. Pawliszyn* “Integration of Dialysis Membranes into a Poly(dimethylsiloxane) Microfluidic Chip for Isoelectric Focusing of Proteins Using Whole-channel Imaging Detection”, Anal Chem, 80 (2008) 7401-7407.
DOI: https://doi.org/10.1021/ac8010928
33) Z. Liu*, J. Ou, R. Samy, T. Glawdel, T. Huang, C. L. Ren*, J. Pawliszyn* “Side-By-Side Comparison of Disposable Microchips with Commercial Capillary Cartridges for Application in Capillary Isoelectric Focusing With Whole Column Imaging Detection”, Lab Chip, 8 (2008) 1738-1741.
DOI: https://doi.org/10.1039/B807646D
32) J. Taylor, C. L. Ren*, G. D. Stubley, “Numerical and Experimental Evaluation of Microfluidic Sorting Devices”, Biotechnol Progr, 24 (2008) 981-991. (invited)
DOI: https://doi.org/10.1002/btpr.7
31) R. Samy, T. Glawdel, C. L. Ren*, “Method for Microfluidic Whole-Chip Temperature Measurement Using Thin-Film Poly(dimethylsiloxane)/Rhodamine B”, Anal Chem, 80 (2008) 369–375.
DOI: https://doi.org/10.1021/ac071268c
30) C. Elbuken, L. Gui, C. L. Ren*, M. Yavuz, B. Khamesee. “Design and Analysis of a Polymeric Photo-thermal Microactuator”, Sens Actuator A: Phys, 147(2008) 292-299.
DOI: https://doi.org/10.1016/j.sna.2008.04.019
29) J. Taylor, G. D. Stubley, C. L. Ren*, “Experimental Determination of Sample Stream Focusing with Fluorescent Dye”, Electrophoresis, 29 (2008) 2953-2959.
DOI: https://doi.org/10.1002/elps.200700931
28) L. Gui, C. L. Ren*, “Analytical and Numerical Study of Joule Heating Effects on Electrokinetically Pumped Continuous Flow PCR Chips”, Langmuir, 24 (2008) 2938-2946.
DOI: https://doi.org/10.1021/la703201p
27) L. Gui, C. L. Ren*, “Temperature Measurement in Microfluidic Chips Using Photobleaching of a Fluorescent Thin Film”, Appl Phys Lett, 92 (2008) 024102. (selected by Virtual Journal of Nanoscale Science & Technology)
DOI: https://doi.org/10.1063/1.2828717
2007
N/A (delayed due to Prof. Ren's maternity leave in 2006)
2006
26) W. G. Hou*, C. L. Ren, “Evaluation of Intrinsic Ionization and Complexation Constants of TiO2 and Mg-Fe Hydrotalcite-like Compounds”, Chin J Chem, 24 (2006) 1336-1341.
DOI: https://doi.org/10.1002/cjoc.200690249
25) L. Gui, C. L. Ren*, “Numerical Simulation of Heat Transfer and Electrokinetic Flow in an Electroosmosis-based Continuous Flow PCR Chip”, Anal Chem, 78 (2006) 6215-6222.
DOI: https://doi.org/10.1021/ac060553d
24) Z. Shao, C. L. Ren*, G. E. Schneider, “A 3D Electrokinetic Flow Structure of Solution Displacement in Microchannels for on-Chip Sample Preparation Applications”, J Micromech Microeng, 16 (2006) 589-600.
DOI: https://doi.org/10.1088/0960-1317/16/3/015
23) B. Kates, C. L. Ren*, “Study of Joule Heating Effects on Temperature Gradient in Diverging Microchannels for Isoelectric Focusing Application”, Electrophoresis, 27 (2006) 1967-1976.
DOI: https://doi.org/10.1002/elps.200500784
22) C. L. Ren, D. Li*, “Electrokinetic Sample Transport in a Microchannel with Spatial Electrical Conductivity Gradients”, J Colloid Interface Sci, 294 (2006) 482–491.
DOI: https://doi.org/10.1016/j.jcis.2005.07.051
2005
21) J. Taylor, C. L. Ren*, “Application of Continuum Mechanics to Fluid Flow in Nanochannels”, Microfluidics Nanofluidics, 1 (2005) 356-363.
DOI: https://doi.org/10.1007/s10404-005-0044-9
20) J. N. McMullin*, H. Qiao, S. Goel, C. L. Ren, D. Li, “Integrated Optical Measurement of Microfluid Velocity”, J Micromech Microeng, 15 (2005) 1810-1816. (HOT ARTICLE!!! According to the publisher, the above article was downloaded 250 times within the first three months of appearance)
DOI: https://doi.org/10.1088/0960-1317/15/10/004
19) C. L. Ren, D. Li*, “Improved Understanding of the Effect of Electrical Double Layer on Pressure-Driven Flow in Microchannels”, Anal Chim Acta, 531 (2005) 15-23.
DOI: https://doi.org/10.1016/j.aca.2004.09.078
18) J. S. Lee, C. L. Ren and D. Li*, “Effects of Surface Heterogeneity on Flow Circulation in Electroosmotic Flow in Microchannels”, Anal Chim Acta, 530 (2005) 273-282.
DOI: https://doi.org/10.1016/j.aca.2004.09.026
2004
17) C. L. Ren, Y. Hu, C. Werner, D. Li*, “A New Model for the Electrical Double Layer Interaction between Two Surfaces in Aqueous Solutions”, J Adhesion, 80 (2004) 831-849.
DOI: https://doi.org/10.1080/00218460490480824
16) C. L. Ren, D. Li*, “Effects of Spatial Gradients of Electrical Conductivity on Chip-based Injection Processes”, Anal Chim Acta, 518 (2004) 59-68.
DOI: https://doi.org/10.1016/j.aca.2004.05.018
15) C. L. Ren, D. Li*, “Electroviscous Effects on Pressure-Driven Flow of Dilute Electrolyte Solutions in Small Microchannels”,J Colloid Interface Sci, 274 (2004) 319-330.
DOI: https://doi.org/10.1016/j.jcis.2003.10.036
2003-2000
(Note: Prof. Ren's full name before 2004 was Liqing Ren)
14) L. Ren, D. Sinton, D. Li*, “Numerical Simulation of Microfluidic Injection Processes in Crossing Microchannels”, J Micromech Microeng, 13 (2003) 739–747.
DOI: https://doi.org/10.1088/0960-1317/13/5/329
13) L. Ren, J. Masliyah, D. Li*, “Experimental and Theoretical Study of the Displacement Process between Two Electrolyte Solutions in A Microchannel”, J Colloid Interface Sci, 257 (2003) 85–92.
DOI: https://doi.org/10.1016/S0021-9797(02)00012-7
12) D. Sinton, L. Ren, X. Xuan, D. Li*, “Effects of Liquid Conductivity Differences on Multi-Component Sample Injection, Pumping and Stacking in Microfluidic Chips”, Lab on a Chip, 3 (2003) 173–179.
DOI: https://doi.org/10.1039/B304614A
11) D. Sinton, L. Ren, D. Li*, “A Dynamic Loading Method for Controlling On-Chip Microfluidic Sample Injection", J Colloid Interface Sci, 266 (2003) 448–456.
DOI: https://doi.org/10.1016/S0021-9797(03)00630-1
10) D. Sinton, L. Ren, D. Li*, “Visualization and Numerical Modeling of Microfluidic On-Chip Injection Processes”, J Colloid Interface Sci, 260 (2003) 431-439.
DOI: https://doi.org/10.1016/S0021-9797(02)00181-9
9) A. Sze, D. Erickson, L. Ren, D. Li*, “Zeta-Potential Measurement Using the Smoluchowski Equation and the Slope of the Current–Time Relationship in Electroosmotic Flow” J Colloid Interface Sci, 261 (2003) 402–410.
DOI: https://doi.org/10.1016/S0021-9797(03)00142-5
8) L. Ren, D. Li*, “Theoretical Studies of Microfluidic Dispensing Process”, J Colloid Interface Sci, 254 (2002) 384–395.
DOI: https://doi.org/10.1006/jcis.2002.8645
7) L. Ren, C. Escobedo, D. Li*, “A New Method of Evaluating the Average Electro-Osmotic Velocity in Microchannels”, J Colloid Interface Sci, 250 (2002) 238–242.
DOI: https://doi.org/10.1006/jcis.2002.8299
6) D. Sinton, C. Escobedo, L. Ren , D. Li*, “Direct and Indirect Electroosmotic Flow Velocity Measurements in microchannels”, J Colloid Interface Sci, 254 (2002) 184–189.
DOI: https://doi.org/10.1006/jcis.2002.8584
5) L. Ren, C. Escobedo, D. Li*, “Electroosmotic Flow in a Micro-capillary with One Solution Displacing Another Solution”, J Colloid Interface Sci, 242 (2001) 264–271.
DOI: https://doi.org/10.1006/jcis.2001.7809
4) L. Ren, D. Li*, “ElectroOsmotic Flow in Heterogeneous Microchannels”, J Colloid Interface Sci, 243 (2001) 255–261.
DOI: https://doi.org/10.1006/jcis.2001.7824
3) L. Ren, W. Qu, D. Li*, “Interfacial Electrokinetic Effects on Liquid Flow in Microchannels”, Int J Heat Mass Transfer, 44 (2001) 3125–3134.
DOI: https://doi.org/10.1016/S0017-9310(00)00339-2
2) L. Ren, D. Li*, W. Qu, “Electro-Viscous Effects on Liquid Flow in Microchannels”, J Colloid Interface Sci, 233 (2001) 12–22.
DOI: https://doi.org/10.1006/jcis.2000.7262
1) L. Ren*, B. Chen, J. Liu, “Study of Heat Transfer Correlation of Two-Phase Closed ThermosyphoN (PDF) ”, J Dalian University of Technology, 39 (1999) 532–537.