Tuesday, December 16, 2014 — 3:30 PM to 5:00 PM EST

Graham Taylor
University of Guelph

Learning Representations with Multiplicative Interactions

Representation learning algorithms are machine learning algorithms which involve the learning of features or explanatory factors. Deep learning techniques, which employ several layers of representation learning, have achieved much recent success in machine learning benchmarks and competitions, however, most of these successes have been achieved with purely supervised learning methods and have relied on large amounts of labeled data. In this talk, I will discuss a lesser-known but important class of representation learning algorithms that are capable of learning higher-order features from data. The main idea is to learn relations between pixel intensities rather than the pixel intensities themselves by structuring the model as a tri-partite graph which connects hidden units to pairs of images.  If the images are different, the hidden units learn how the images transform. If the images are the same, the hidden units encode within-image pixel covariances. Learning such higher-order features can yield improved results on recognition and generative tasks. I will discuss recent work on applying these methods to structured prediction problems.

Location 
PAS - Psychology, Anthropology, Sociology
Room 2464
200 University Avenue West

Waterloo, ON N2L 3G1
Canada

Waterloo researchers among top in Canada

Chris Eliasmith writing on a whiteboardChris Eliasmith, Director of the Centre for Theoretical Neuroscience, received the prestigious John C. Polanyi Award  and is also an inaugural member of the Royal Society of Canada's College of New Scholars, Artists, and Scientists.

S M T W T F S
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
  1. 2019 (5)
    1. October (1)
    2. September (1)
    3. May (1)
    4. April (1)
    5. March (1)
  2. 2018 (4)
    1. April (1)
    2. March (2)
    3. January (1)
  3. 2017 (7)
  4. 2016 (8)
  5. 2015 (9)
  6. 2014 (6)
  7. 2013 (8)
  8. 2012 (4)

How to Build a Brain

Chris Eliasmith’s team at the Centre for Theoretical Neuroscience has built Spaun, the world’s largest simulation of a functioning brain. The related book is now available and for the full article Waterloo Stories.

Nengo

This is a collection of coverage of work with Nengo (Neural Engineering Objects) that has appeared in the popular press recently.