Publications

Search
Author Title Type Year(Desc)
2013
Nieves-González, A., Clausen, C., Layton, A. T., Layton, H. E., & Moore, L. C.. (2013). Transport efficiency and workload distribution in a mathematical model of the thick ascending limb. American Journal of Physiology-Renal Physiology, 304, F653–F664. American Physiological Society Bethesda, MD.
Leiderman, K., Bouzarth, E. L., Cortez, R., & Layton, A. T.. (2013). A regularization method for the numerical solution of periodic Stokes flow. Journal of Computational Physics, 236, 187–202. Elsevier.
2014
Olson, S. D., Layton, A., & Olson, S.. (2014). Motion of filaments with planar and helical bending waves in a viscous fluid. Biological Fluid Dynamics: Modeling, Computation, and Applications, AMS Contemp. Math. Series, Layton A, Olson S (eds). AMS: Providence, RI, 109–128.
Layton, A. T., Edwards, A., Layton, A. T., & Edwards, A.. (2014). Electrophysiology of Renal Vascular Smooth Muscle Cells. Mathematical Modeling in Renal Physiology, 107–140. Springer Berlin Heidelberg.
Moss, R., & Layton, A.. (2014). Impacts of UT-A2 inhibition on urine composition: a mathematical model (1137.8). The FASEB Journal, 28, 1137–8. The Federation of American Societies for Experimental Biology.
Layton, A. T., Edwards, A., Layton, A. T., & Edwards, A.. (2014). Introduction: Basics of Kidney Physiology. Mathematical Modeling in Renal Physiology, 1–5. Springer Berlin Heidelberg.
Layton, A. T., Edwards, A., Layton, A. T., & Edwards, A.. (2014). Vasomotion and Myogenic Response of the Afferent Arteriole. Mathematical Modeling in Renal Physiology, 141–154. Springer Berlin Heidelberg.
Nganguia, H., Young, Y. - N., Layton, A., Hu, W. - F., & Lai, M. - C.. (2014). Immersed Interface Method for Drop Electrohydrodynamic. In APS Division of Fluid Dynamics Meeting Abstracts (pp. H13–006).
Layton, A. T.. (2014). Mathematical modeling of urea transport in the kidney. Urea Transporters, 31–43. Springer Netherlands.
Sgouralis, I., Evans, R., Gardiner, B., & Layton, A.. (2014). Contribution of hemodilution to renal hypoxia following cardiopulmonary bypass surgery (890.12). The FASEB Journal, 28, 890–12. The Federation of American Societies for Experimental Biology.
Fry, B., & Layton, A.. (2014). Structural organization of the renal medulla has a significant impact on oxygen distribution (890.11). The FASEB Journal, 28, 890–11. The Federation of American Societies for Experimental Biology.
Layton, A. T., Edwards, A., Layton, A. T., & Edwards, A.. (2014). Transport across tubular epithelia. Mathematical Modeling in Renal Physiology, 155–183. Springer Berlin Heidelberg.
Layton, A. T., Edwards, A., Layton, A. T., & Edwards, A.. (2014). Urine Concentration. Mathematical Modeling in Renal Physiology, 43–61. Springer Berlin Heidelberg.
Layton, A. T., Edwards, A., Layton, A. T., & Edwards, A.. (2014). Counter-Current Exchange Across Vasa Recta. Mathematical Modeling in Renal Physiology, 63–83. Springer Berlin Heidelberg.
Layton, A. T., Edwards, A., Layton, A. T., & Edwards, A.. (2014). Glomerular Filtration. Mathematical Modeling in Renal Physiology, 7–41. Springer Berlin Heidelberg.
Layton, A. T.. (2014). Impacts of Facilitated Urea Transporters on the Urine-Concentrating Mechanism in the Rat Kidney. Biological Fluid Dynamics: Modeling, Computations, and Applications, 628, 191. American Mathematical Soc.
Layton, A. T., Edwards, A., Layton, A. T., & Edwards, A.. (2014). Solutions to Problem Sets. Mathematical Modeling in Renal Physiology, 185–218. Springer Berlin Heidelberg.
Herschlag, G., Liu, J. - G., & Layton, A.. (2014). An exact solution for Stokes flow in an infinite channel with permeable walls. In APS Division of Fluid Dynamics Meeting Abstracts (pp. D15–006).
Layton, A. T., Edwards, A., Layton, A. T., & Edwards, A.. (2014). Tubuloglomerular Feedback. Mathematical Modeling in Renal Physiology, 85–106. Springer Berlin Heidelberg.
Layton, A. T., & Olson, S. D.. (2014). Biological Fluid Dynamics: Modeling, Computations, and Applications. American Mathematical Society.

Pages