Publications

Search
Author Title Type [ Year(Desc)]
2013
Nieves-González, A. , Clausen, C. , Layton, A. T. , Layton, H. E. , & Moore, L. C. . (2013). Transport efficiency and workload distribution in a mathematical model of the thick ascending limb. American Journal of Physiology-Renal Physiology, 304, F653–F664. American Physiological Society Bethesda, MD.
Leiderman, K. , Bouzarth, E. L. , Cortez, R. , & Layton, A. T. . (2013). A regularization method for the numerical solution of periodic Stokes flow. Journal of Computational Physics, 236, 187–202. Elsevier.
2014
Olson, S. D. , Layton, A. , & Olson, S. . (2014). Motion of filaments with planar and helical bending waves in a viscous fluid. Biological Fluid Dynamics: Modeling, Computation, and Applications, AMS Contemp. Math. Series, Layton A, Olson S (eds). AMS: Providence, RI, 109–128.
Layton, A. T. , Edwards, A. , Layton, A. T. , & Edwards, A. . (2014). Electrophysiology of Renal Vascular Smooth Muscle Cells. Mathematical Modeling in Renal Physiology, 107–140. Springer Berlin Heidelberg.
Moss, R. , & Layton, A. . (2014). Impacts of UT-A2 inhibition on urine composition: a mathematical model (1137.8). The FASEB Journal, 28, 1137–8. The Federation of American Societies for Experimental Biology.
Layton, A. T. , Edwards, A. , Layton, A. T. , & Edwards, A. . (2014). Introduction: Basics of Kidney Physiology. Mathematical Modeling in Renal Physiology, 1–5. Springer Berlin Heidelberg.
Layton, A. T. , Edwards, A. , Layton, A. T. , & Edwards, A. . (2014). Vasomotion and Myogenic Response of the Afferent Arteriole. Mathematical Modeling in Renal Physiology, 141–154. Springer Berlin Heidelberg.
Nganguia, H. , Young, Y. - N. , Layton, A. , Hu, W. - F. , & Lai, M. - C. . (2014). Immersed Interface Method for Drop Electrohydrodynamic. In APS Division of Fluid Dynamics Meeting Abstracts (pp. H13–006).
Layton, A. T. . (2014). Mathematical modeling of urea transport in the kidney. Urea Transporters, 31–43. Springer Netherlands.
Sgouralis, I. , Evans, R. , Gardiner, B. , & Layton, A. . (2014). Contribution of hemodilution to renal hypoxia following cardiopulmonary bypass surgery (890.12). The FASEB Journal, 28, 890–12. The Federation of American Societies for Experimental Biology.
Fry, B. , & Layton, A. . (2014). Structural organization of the renal medulla has a significant impact on oxygen distribution (890.11). The FASEB Journal, 28, 890–11. The Federation of American Societies for Experimental Biology.
Layton, A. T. , Edwards, A. , Layton, A. T. , & Edwards, A. . (2014). Transport across tubular epithelia. Mathematical Modeling in Renal Physiology, 155–183. Springer Berlin Heidelberg.
Layton, A. T. , Edwards, A. , Layton, A. T. , & Edwards, A. . (2014). Urine Concentration. Mathematical Modeling in Renal Physiology, 43–61. Springer Berlin Heidelberg.
Layton, A. T. , Edwards, A. , Layton, A. T. , & Edwards, A. . (2014). Counter-Current Exchange Across Vasa Recta. Mathematical Modeling in Renal Physiology, 63–83. Springer Berlin Heidelberg.
Layton, A. T. , Edwards, A. , Layton, A. T. , & Edwards, A. . (2014). Glomerular Filtration. Mathematical Modeling in Renal Physiology, 7–41. Springer Berlin Heidelberg.
Layton, A. T. . (2014). Impacts of Facilitated Urea Transporters on the Urine-Concentrating Mechanism in the Rat Kidney. Biological Fluid Dynamics: Modeling, Computations, and Applications, 628, 191. American Mathematical Soc.
Layton, A. T. , Edwards, A. , Layton, A. T. , & Edwards, A. . (2014). Solutions to Problem Sets. Mathematical Modeling in Renal Physiology, 185–218. Springer Berlin Heidelberg.
Herschlag, G. , Liu, J. - G. , & Layton, A. . (2014). An exact solution for Stokes flow in an infinite channel with permeable walls. In APS Division of Fluid Dynamics Meeting Abstracts (pp. D15–006).
Layton, A. T. , Edwards, A. , Layton, A. T. , & Edwards, A. . (2014). Tubuloglomerular Feedback. Mathematical Modeling in Renal Physiology, 85–106. Springer Berlin Heidelberg.
Layton, A. T. , & Olson, S. D. . (2014). Biological Fluid Dynamics: Modeling, Computations, and Applications. American Mathematical Society.

Pages