Publications

Search
Author [ Title(Desc)] Type Year
M
Layton, A. T. , & Edwards, A. . (2014). Mathematical Modeling in Renal Physiology. Springer.
Layton, A. T. . (2013). Mathematical modeling of kidney transport. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 5, 557–573. John Wiley & Sons, Inc. Hoboken, USA.
Layton, A. T. , Gilbert, R. L. , & Pannabecker, T. L. . (2012). Mathematical Modeling of Renal Function: Isolated interstitial nodal spaces may facilitate preferential solute and fluid mixing in the rat renal inner medulla. American Journal of Physiology-Renal Physiology, 302, F830. American Physiological Society.
Sgouralis, I. , & Layton, A. T. . (2015). Mathematical modeling of renal hemodynamics in physiology and pathophysiology. Mathematical biosciences, 264, 8–20. Elsevier.
Layton, A. T. . (2014). Mathematical Modeling of Urea Transport in the Kidney. Urea Transporters, 31–43. Springer, Dordrecht.
Layton, A. T. . (2014). Mathematical Modeling of Urea Transport in the Kidney. In Urea Transporters (pp. 31–43). Springer, Dordrecht.
Layton, A. T. . (2020). Mathematical Modelling and Biomechanics of the Brain. SIAM PUBLICATIONS 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA.
Marcano, M. , Layton, A. T. , & Layton, H. E. . (2007). Maximum Urine Concentrating Capability for Transport Parameters and Urine Flow within Prescribed Ranges. The Federation of American Societies for Experimental Biology.
Marcano, M. , Layton, A. T. , & Layton, H. E. . (2007). Maximum Urine Concentrating Capability for Transport Parameters and Urine Flow within Prescribed Ranges. Federation of American Societies for Experimental Biology.
Marcano, M. , Layton, A. T. , & Layton, H. E. . (2010). Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney. Bulletin of mathematical biology, 72, 314–339. Springer-Verlag.
Layton, H. E. , Layton, A. T. , & Moore, L. C. . (2007). A mechanism for the generation of harmonics in oscillations mediated by tubuloglomerular feedback. The Federation of American Societies for Experimental Biology.
Layton, H. E. , Layton, A. T. , & Moore, L. C. . (2007). A mechanism for the generation of harmonics in oscillations mediated by tubuloglomerular feedback. Federation of American Societies for Experimental Biology.
Savage, N. S. , Layton, A. T. , & Lew, D. J. . (2012). Mechanistic mathematical model of polarity in yeast. Molecular biology of the cell, 23, 1998–2013. The American Society for Cell Biology.
Layton, A. T. , & Layton, H. E. . (2003). A method for tracking solute distribution in mathematical models of the urine concentrating mechanism (UCM). In FASEB JOURNAL (Vol. 17, pp. A485–A485). FEDERATION AMER SOC EXP BIOL 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA.
Layton, A. T. . (2005). A methodology for tracking solute distribution in a mathematical model of the kidney. Journal of Biological Systems, 13, 399–419. World Scientific.
Sadria, M. , Seo, D. , & Layton, A. T. . (2021). The Mixed Blessing of AMPK Signaling in Cancer Treatments. Available at SSRN 3889705.
Edwards, A. , Palm, F. , & Layton, A. T. . (2020). A model of mitochondrial O2 consumption and ATP generation in rat proximal tubule cells. American Journal of Physiology-Renal Physiology, 318, F248–F259. American Physiological Society Bethesda, MD.
Bouzarth, E. L. , Layton, A. T. , & Young, Y. - N. . (2011). Modeling a semi-flexible filament in cellular Stokes flow using regularized Stokeslets. International Journal for Numerical Methods in Biomedical Engineering, 27, 2021–2034. John Wiley & Sons, Ltd Chichester, UK.
Ciocanel, M. - V. , Stepien, T. L. , Edwards, A. , & Layton, A. T. . (2017). Modeling autoregulation of the afferent arteriole of the rat kidney. In Women in Mathematical Biology (pp. 75–100). Springer, Cham.
Sgouralis, I. , & Layton, A. T. . (2017). Modeling blood flow and oxygenation in a diabetic rat kidney. In Women in Mathematical Biology (pp. 101–113). Springer, Cham.

Pages