Publications
Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli. Applied and Environmental Microbiology, 81, 5103-5114. 2015_coupling_the_crispr_cas9_system_with_lambda_red_recombineering_enables_simplified_chromosomal_gene_replacement_in_escherichia_coli.pdf
. (2015). Elimination of carbon catabolite repression in Clostridium acetobutylicum-a journey toward simultaneous use of xylose and glucose. Applied Microbiology and Biotechnology, 99, 7579-7588. 2015_elimination_of_carbon_catabolite_repression_in_clostridium_acetobutylicum_-_a_journey_toward_simultaneous_use_of_xylose_and_glucose.pdf
. (2015). Engineering Escherichia coli for high-level production of propionate. Journal of Industrial Microbiology & Biotechnology, 42, 1057-1072.
. (2015). Improved biological activity of a single chain antibody fragment against human epidermal growth factor receptor 2 (HER2) expressed in the periplasm of Escherichia coli. Protein Expression and Purification, 116, 66-74.
. (2015). Optimization of a single-chain antibody fragment overexpression in Escherichia coli using response surface methodology. Research in Pharmaceutical Sciences, 10, 75-83.
. (2015). Development of a CRISPR-Cas9 Tool Kit for Comprehensive Engineering of Bacillus subtilis. Applied and Environmental Microbiology, 82, 4876-4895. 2016_development_of_a_crispr-cas9_toolkit_for_comprehensive_engineering_of_bacillus_subtilis.pdf
. (2016). Engineering Escherichia coli for Microbial Production of Butanone. Applied and Environmental Microbiology, 82, 2574-2584. 2016_engineering_escherichia_coli_for_microbial_production_of_butanone.pdf
. (2016). Engineering of Escherichia coli for direct and modulated biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer using unrelated carbon sources. Scientific Reports, 6. 2016en2.pdf
. (2016). Disruption of the Reductive 1,3-Propanediol Pathway Triggers Production of 1,2-Propanediol for Sustained Glycerol Fermentation by Clostridium pasteurianum. Applied and Environmental Microbiology, 82, 5375-5388. 2016_disruption_of_the_reductive_13-propanediol_pathway.pdf
(2016). Genome-directed analysis of prophage excision, host defence systems, and central fermentative metabolism in Clostridium pasteurianum. Scientific Reports, 6. 2016_genome-directed_analysis_of_prophage_excision_host_defence_systems_and_central_fermentative_metabolism_in_clostridium_pasteurianum.pdf
. (2016). Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium. Scientific Reports, 6. 2016_harnessing_heterologous_and_endogenous_crispr-cas_machineries_for_efficient_markerless_genome_editing_in_clostridium.pdf
. (2016). Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium. Applied and Environmental Microbiology, 82, 6109-6119. 2016_extending_crispr-cas9_technology_from_genome_editing_to_transcriptional_engineering_in_the_genus_clostridium.pdf
. (2016). Twin arginine translocation system in secretory expression of recombinant human growth hormone. Research in Pharmaceutical Sciences, 11, 461-469.
. (2016). Recent advances in engineering propionyl-CoA metabolism for microbial production of value-added chemicals and biofuels. Critical Reviews in Biotechnology, 37, 701-722. 2017_recent_advances_in_engineering_propionyl_coa_metabolism_for_microbial_production_of_value_added_chemicals_and_biofuels.pdf
. (2017). Use of a Case on Metabolically Engineered Escherichia coli to Develop a Framework for the Design and Analysis of Bioprocesses. International Journal of Engineering Education, 33, 751-760.
. (2017). Application of hydrocarbon and perfluorocarbon oxygen vectors to enhance heterologous production of hyaluronic acid in engineered Bacillus subtilis. Biotechnology and Bioengineering, 115, 1239-1252. 2018_application_of_hydrocarbon_and_perfluorocarbon_oxygen_vectors_to_enhance_heterologous_production_of_hyaluronic_acid_in_engineered_bacillus_subtilis.pdf
. (2018). Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Biotechnology and Bioengineering, 115, 216-231. 2018_engineering_of_cell_membrane_to_enhance_heterologous_production_of_hyaluronic_acid_in_bacillus_subtilis.pdf
. (2018). Metabolic engineering of Bacillus subtilis for l-valine overproduction. Biotechnology and Bioengineering, 115, 2778-2792. 2018_metabolic_engineering_of_bacillus_subtilis_forl-valine_overproduction.pdf
. (2018). . (2018). . (2019).