Publications
Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell. Environmental Science and Technology, 44, 948-954. doi:10.1021/es9025358
. (2010). Effects of substrate diffusion and anode potential on kinetic parameters for anode-respiring bacteria. Environmental Science and Technology, 43, 7571-7577. doi:10.1021/es9015519
. (2009). An electron-flow model can predict complex redox reactions in mixed-culture fermentative BioH2: Microbial ecology evidence. Biotechnology and Bioengineering, 104, 687-697. doi:10.1002/bit.22442
. (2009). Evaluation of metabolism using stoichiometry in fermentative biohydrogen. Biotechnology and Bioengineering, 102, 749-758. doi:10.1002/bit.22107
. (2009). Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode. Environmental Science and Technology, 43, 7971-7976. doi:10.1021/es900204j
. (2009). Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Research, 42, 1501-1510. doi:10.1016/j.watres.2007.10.036
. (2008). Thermodynamic evaluation on H2 production in glucose fermentation. Environmental Science and Technology, 42, 2401-2407. doi:10.1021/es702610v
. (2008). Comment on "Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge". International Journal of Hydrogen Energy, 31, 1797-1798. doi:10.1016/j.ijhydene.2006.04.002
. (2006). Comment on "The effect of kaolin particles on the behavior of nitrifying activated sludge units". Bioresource Technology, 86, 99-104. doi:10.1016/S0960-8524(02)00156-6
. (2003). Comment on "the interaction of humic substances with cationic polyelectrolytes". Water Research, 37, 715-716. doi:10.1016/S0043-1354(02)00355-X
. (2003). Letter to the Editor (multiple letters) [1]. Bioresource Technology, 83, 263-269. doi:10.1016/S0960-8524(01)00213-9
. (2002). Comment on "Comparison of the filtration characteristics between attached and suspended microorganisms in submerged membrane bioreactor". Water Research, 36, 4938-4939. doi:10.1016/S0043-1354(02)00039-8
. (2002). Comment on "Influence on different natural zeolite concentration on the anaerobic digestion of piggery waste" (Bioresource Technology 80 (2001) 37-43). Bioresource technology, 83, 263-265; author reply 267-269. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-18744387979&partnerID=40&md5=90b570427cfe4946d6b0a66b5f842dfe
. (2002). Wastewater treatment in a hybrid biological reactor using powdered minerals: Effects of organic loading rates on COD removal and nitrification. Process Biochemistry, 38, 81-88. doi:10.1016/S0032-9592(02)00044-4
. (2002). Correlation of Overvoltages and Current Densities to Estimate Optimal Electrode Size for Sediment Microbial Fuel Cells. Energy Technology, 4, 369-374. doi:10.1002/ente.201500272
. (2016). Hydrogen consumption in microbial electrochemical systems (MXCs): The role of homo-acetogenic bacteria. Bioresource Technology, 102, 263-271. doi:10.1016/j.biortech.2010.03.133
. (2011). Syntrophic interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: Electron balances. Biotechnology and Bioengineering, 103, 513-523. doi:10.1002/bit.22267
. (2009). The evaluation of enhanced nitrification by immobilized biofilm on a clinoptilolite carrier. Bioresource Technology, 82, 183-189. doi:10.1016/S0960-8524(01)00160-2
. (2002). Enhanced current and power density of micro-scale microbial fuel cells with ultramicroelectrode anodes. Journal of Micromechanics and Microengineering, 26. doi:10.1088/0960-1317/26/9/095016
. (2016). A high power density miniaturized microbial fuel cell having carbon nanotube anodes. Journal of Power Sources, 273, 823-830. doi:10.1016/j.jpowsour.2014.09.165
(2015).