Publications

Search
Author Title Type [ Year(Asc)]
2024
Hare, K. G. , & Vavra, T. . (2024). Self-similar sets and self-similar measures in the $p$-adics. Journal of Fractal Geometry, 11(3/4), 247-287. Retrieved from https://ems.press/journals/jfg/articles/14298107
Hare, K. G. , & Sidorov, N. . (2024). The Minkowski sum of linear Cantor sets. Acta Arithmetica, 212(2), 173-183. Retrieved from https://arxiv.org/abs/2210.07671 table.txt
Caldwell, J. W. , Hare, K. G. , & Tomáš, T. . (2024). Non-expansive matrix number systems with bases similar to certain Jordan blocks. Journal of Combinatorial Theory, Series A, 202, 21 pp. Retrieved from https://doi.org/10.1016/j.jcta.2023.105828
2021
Hare, K. G. , & Sidorov, N. . (2021). On a family of self-affine IFS whose attractors have non-fractal top. Fractals, 29(6). Retrieved from https:///dx.doi.org/10.1142/S0218348X21501590 g_data.tex ros_data.txt
Hare, K. G. , & Sidorov, N. . (2021). Conjugates of Pisot numbers. Int. J. Number Theory, 17(6), 1307--1321. Retrieved from https://dx.doi.org/10.1142/S1793042121500378
Hare, K. E. , Hare, K. G. , & Rutar, A. . (2021). When the Weak Separation Condition implies the Generalized Finite Type Condition. Proc. AMS, 149(4), 1555--1568. Retrieved from https://doi.org/10.1090/proc/15307
Hare, K. G. , Kempton, T. , Persson, T. , & Sidorov, N. . (2021). Computing Garsia Entropy for Bernoulli Convolutions with Algebraic Parameters. Nonlinearity, 34(7), 4744--4763. Retrieved from https://iopscience.iop.org/article/10.1088/1361-6544/abf849/pdf
Hare, K. G. , & Jankauskas, J. . (2021). On Newman and Littlewood polynomials with prescribed number of zeros inside the unit disk. Math of Computation, 90(328), 831--870. Retrieved from https://doi.org/10.1090/mcom/3570
Hare, K. E. , Hare, K. G. , & Shen, W. . (2021). The Lq-spectrum for a class of self-similar measures with overlap. Asian Journal of Mathematics, 25(2), 195--228. Retrieved from https://dx.doi.org/10.4310/AJM.2021.v25.n2.a3
2020
Hare, K. E. , & Hare, K. G. . (2020). Intermediate Assouad-like dimensions for measures. Fractals, 28(7). Retrieved from https://doi.org/10.1142/S0218348X20501431
Hare, K. E. , Hare, K. G. , & Troscheit, S. . (2020). Quasi-doubling of self-similar measures with overlaps. Journal of Fractal Geometry, 7(3), 233-270. Retrieved from https://doi.org/10.4171/JFG/91
2019
Hare, K. E. , Hare, K. G. , Morris, B. P. M. , & Shen, W. . (2019). The Entropy of Cantor--like measures. Acta Math. Hungar.. Retrieved from https://doi.org/10.1007/s10474-019-00962-1
Hare, K. E. , & Hare, K. G. . (2019). Local dimensions of overlapping self-similar measures. Real Analysis Exchange, 44(2), 247--265. Retrieved from https://projecteuclid.org/journals/real-analysis-exchange/volume-44/issue-2/Local-Dimensions-of-Overlapping-Self-Similar-Measures/10.14321/realanalexch.44.2.0247.full
Fraser, J. M. , Hare, K. E. , Hare, K. G. , Troscheit, S. , & Yu, H. . (2019). The Assouad spectrum and the quasi-Assouad dimension: a tale of two spectra. Annales Academiæ Scientiarum Fennicæ Mathematica, 24(1), 379--387. Retrieved from https://www.acadsci.fi/mathematica/Vol44/vol44pp0379-0387.pdf

Pages