Publications

Search
Author Title Type [ Year(Asc)]
Accepted
Hare, K. G. , & Sidorov, N. . (Accepted). Conjugates of Pisot numbers. Int. J. Number Theory. Retrieved from https://arxiv.org/abs/2010.01511
Hare, K. E. , & Hare, K. G. . (Accepted). Intermediate Assouad-like dimensions for measures. Fractals. Retrieved from https://arxiv.org/abs/2004.05133
Hare, K. E. , Hare, K. G. , & Rutar, A. . (Accepted). When the Weak Separation Condition implies the Generalized Finite Type Condition. Proc. AMS. Retrieved from https://arxiv.org/abs/2002.04575
Hare, K. G. , & Jankauskas, J. . (Accepted). On Newman and Littlewood polynomials with prescribed number of zeros inside the unit disk. Math of Computation. Retrieved from https://arxiv.org/abs/1910.13994
Hare, K. E. , Hare, K. G. , & Shen, W. . (Accepted). The Lq-spectrum for a class of self-similar measures with overlap. Asian Journal of Mathematics. Retrieved from https://arxiv.org/abs/1909.08941
Hare, K. E. , & Hare, K. G. . (Accepted). Local dimensions of overlapping self-similar measures. Real Analysis Exchange. Retrieved from https://arxiv.org/abs/1807.08676
Hare, K. G. , & Hodges, P. W. . (Accepted). Applications of Integer and Semi-Infinite Programming to the Integer Chebyshev Problem. Experimental Mathematics. Retrieved from https://doi.org/10.1080/10586458.2019.1691089 Code_DataFiles.tar
2020
Hare, K. E. , Hare, K. G. , & Troscheit, S. . (2020). Quasi-doubling of self-similar measures with overlaps. Journal of Fractal Geometry, 7(3), 233-270. Retrieved from https://doi-org.proxy.lib.uwaterloo.ca/10.4171/jfg/91
2019
Hare, K. E. , Hare, K. G. , Morris, B. P. M. , & Shen, W. . (2019). The Entropy of Cantor--like measures. Acta Math. Hungar.. Retrieved from https://doi.org/10.1007/s10474-019-00962-1
Fraser, J. M. , Hare, K. E. , Hare, K. G. , Troscheit, S. , & Yu, H. . (2019). The Assouad spectrum and the quasi-Assouad dimension: a tale of two spectra. Annales Academiæ Scientiarum Fennicæ Mathematica, 24(1), 379--387. Retrieved from http://arxiv.org/abs/1804.09607
Hare, K. E. , Hare, K. G. , & Matthews, K. R. . (2019). Local dimensions of measures of finite type on the torus. Asian Journal of Mathematics, 23(1), 127--156. Retrieved from https://dx.doi.org/10.4310/AJM.2019.v23.n1.a7
Hare, K. G. , & Mossinghoff, M. J. . (2019). Most Reinhardt polygons are sporadic. Geometriae Dedicata, 198(1), 1--18. Retrieved from https://doi.org/10.1007/s10711-018-0326-5
2018
Hare, K. E. , Hare, K. G. , & Troscheit, S. . (2018). Local dimensions of random homogeneous self-similar measures: strong separation and finite type. Mathematische Nachrichten, 291(16), 2397-2426. Retrieved from http://dx.doi.org/10.1002/mana.201700466
Hare, K. G. , & Sidorov, N. . (2018). Open maps: small and large holes with unusual properties. Discrete and Continuous Dynamical Systems, 38(11), 5883--5895. Retrieved from http://aimsciences.org/article/doi/10.3934/dcds.2018255
Hare, K. E. , Hare, K. G. , & Simms, G. . (2018). Local dimensions of measures of finite type III - Measures that are not equicontractive. Journal of Mathematical Analysis and Applications, 458(2), 1653-1677. Retrieved from https://doi.org/10.1016/j.jmaa.2017.10.037
Clark, L. , Hare, K. G. , & Sidorov, N. . (2018). The baker's map with a convex hole. Nonlinearity, 31(7), 3174-3202. Retrieved from https://arxiv.org/abs/1705.00698
Hare, K. G. , & Saunders, J. C. . (2018). On (a,b) Pairs in Random Fibonacci Sequence. Journal of Number Theory, 190, 352-366. Retrieved from https://arxiv.org/abs/1608.03522

Pages