Supervision and Source Domain Impact on Representation Learning: A Histopathology Case Study

Citation:

Sikaroudi, M. et al., 2020. Supervision and Source Domain Impact on Representation Learning: A Histopathology Case Study. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'20). 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'20): IEEE Engineering in Medicine and Biology Society. Available at: https://embs.papercept.net/conferences/scripts/rtf/EMBC20_ContentListWeb_1.html#moat2-15_02.
2005.08629.pdf2.4 MB

Abstract:

As many algorithms depend on a suitable representation of data, learning unique features is considered a crucial task. Although supervised techniques using deep neural networks have boosted the performance of representation learning, the need for a large set of labeled data limits the application of such methods. As an example, high-quality delineations of regions of interest in the field of pathology is a tedious and time-consuming task due to the large image dimensions. In this work, we explored the performance of a deep neural network and triplet loss in the area of representation learning. We investigated the notion of similarity and dissimilarity in pathology whole-slide images and compared different setups from unsupervised and semi-supervised to supervised learning in our experiments. Additionally, different approaches were tested, applying few-shot learning on two publicly available pathology image datasets. We achieved high accuracy and generalization when the learned representations were applied to two different pathology datasets.
 

 

Notes:

Conference Description

Last updated on 09/09/2020