Publications
Zero-valent iron fracture reactive barriers for remediating chlorinated solvent contaminants in fractured aquifers. In IAHS-AISH Publication (pp. 250-257). Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-62949115062&partnerID=40&md5=9cc7aaff43d89240b3fa0c8de317e5b4
. (2008). The urban atmosphere as a non-point source for the transport of MTBE and other volatile organic compounds (VOCS) to shallow groundwater. In ACS Division of Environmental Chemistry, Preprints (Vol. 37, pp. 385-387). Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-5844320296&partnerID=40&md5=edc8ad04c6e4e797073f1da7e178ae4c
. (1997). The urban atmosphere as a non-point source for the transport of MTBE and other volatile organic compounds (VOCS) to shallow groundwater. Environmental Science and Technology, 31, 2821-2828. doi:10.1021/es970040b
. (1997). Two‐phase flow in a variable aperture fracture. Water Resources Research, 29, 3453-3476. doi:10.1029/93WR01285
. (1993). Two-phase flow and transport in a single fracture-porous medium system. Journal of Contaminant Hydrology, 37, 319-341. doi:10.1016/S0169-7722(98)00169-7
. (1999). Treatment of organic compounds by activated persulfate using nanoscale zerovalent iron. Industrial and Engineering Chemistry Research, 52, 13564-13571. doi:10.1021/ie400387p
. (2013). Treatment of a trichloroethylene source zone using persulfate activated by an emplaced nano-Pd-Fe0 zone. Water, Air, and Soil Pollution, 224. doi:10.1007/s11270-013-1780-1
. (2013). Targeted nanoparticle binding & detection in petroleum hydrocarbon impacted porous media. Chemosphere, 353-361. doi:10.1016/j.chemosphere.2018.10.046
(2019). Stability of Activated Persulfate in the Presence of Aquifer Solids. Soil and Sediment Contamination, 23, 820-837. doi:10.1080/15320383.2013.722142
. (2014). Source-receptor modeling of PAHs using deposition levels in winter-long urban snowpack. Journal of Environmental Engineering (United States), 120, 1248-1265. doi:10.1061/(ASCE)0733-9372(1994)120:5(1248)
. (1994). Soil vacuum extraction of perchloroethylene from the borden aquifer. Ground Water, 38, 673-688. doi:10.1111/j.1745-6584.2000.tb02703.x
. (2000). Single-phase flow in rough-walled fractures: Navier-Stokes simulations and experimental observations. Computational methods in water resources - Volume 1 - Computational methods for subsurface flow and transport (pp. 315-322). Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033674265&partnerID=40&md5=b9ce4ec2f42b24aedacc604bfb9c0e5e
. (2000). A sensitivity method for ice floe trajectory calculations. Canadian Journal of Civil Engineering, 19, 573-585. doi:10.1139/l92-068
. (1992). Sensing Coated Iron-Oxide Nanoparticles with Spectral Induced Polarization (SIP): Experiments in Natural Sand Packed Flow-Through Columns. Environmental Science and Technology, 52, 14256-14265. doi:10.1021/acs.est.8b03686
(2018). Sample size needs for characterizing pollutant concentrations in highway runoff. Journal of Environmental Engineering, 123, 1061-1065. doi:10.1061/(ASCE)0733-9372(1997)123:10(1061)
. (1997). Route selection through a dynamic ice field using the maximum principle. Transportation Research Part B, 22, 339-356. doi:10.1016/0191-2615(88)90039-2
. (1988). The role of intra-NAPL diffusion on mass transfer from MGP residuals. Journal of Contaminant Hydrology, 213, 49-61. doi:10.1016/j.jconhyd.2018.04.002
. (2018). Reducing the computational cost of automatic calibration through model preemption. Water Resources Research, 46. doi:10.1029/2009WR008957
. (2010). Rebound of a coal tar creosote plume following partial source zone treatment with permanganate. Journal of Contaminant Hydrology, 102, 154-171. doi:10.1016/j.jconhyd.2008.07.001
. (2008). Realistic expectations for the treatment of FMGP residuals by chemical oxidants. Journal of Contaminant Hydrology, 1-17. doi:10.1016/j.jconhyd.2018.08.007
. (2018).